Smith, R.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Chase, J.G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Pretty, C.G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Davidson, S.; Institute of Biomedical Engineering, University of Oxford, United Kingdom
Shaw, G.M.; Christchurch Hospital Intensive Care Unit, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Preload & Frank-Starling curves, from textbook to bedside: Clinically applicable non-additionally invasive model-based estimation in pigs
Publication date :
2021
Journal title :
Computers in Biology and Medicine
ISSN :
0010-4825
eISSN :
1879-0534
Publisher :
Elsevier Ltd
Volume :
135
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work was supported with funding from the University of Canterbury Doctoral Scholarship, MedTech CoRE , Royal Society of New Zealand Engineering Technology-based Innovation in Medicine consortium grant, and EU FP7 International Research Staff Exchange Scheme. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Busse, L., Davison, D.L., Junker, C., Chawla, L.S., Hemodynamic monitoring in the critical care environment. Adv. Chron. Kidney Dis. 20 (2013), 21–29.
Orban, J.C., Walrave, Y., Mongardon, N., Allaouchiche, B., Argaud, L., Aubrun, F., Barjon, G., Constantin, J.-M., Dhonneur, G., Durand-Gasselin, J., Dupont, H., Genestal, M., Goguey, C., Goutorbe, P., Guidet, B., Hyvernat, H., Jaber, S., Lefrant, J.-Y., Mallédant, Y., Morel, J., Ouattara, A., Pichon, N., Guérin Robardey, A.-M., Sirodot, M., Theissen, A., Wiramus, S., Zieleskiewicz, L., Leone, M., Ichai, C., AzuRea, causes and characteristics of death in intensive care units. Anesthesiology 126 (2017), 882–889.
Desaive, T., Horikawa, O., Ortiz, J.P., Chase, J.G., Model-based management of cardiovascular failure: where medicine and control systems converge. Annu. Rev. Contr. 48 (2019), 383–391.
Pinsky, M.R., Payen, D., Functional hemodynamic monitoring. Crit. Care, 9, 2005, 566.
Peverill, R.E., Understanding preload and preload reserve within the conceptual framework of a limited range of possible left ventricular end-diastolic volumes. Adv. Physiol. Educ. 44 (2020), 414–422.
Starling, The linacre lecture on the law of the heart given at cambridge, 1915. Nature, 101, 1918 43–43.
Michard, F., Alaya, S., Zarka, V., Bahloul, M., Richard, C., Teboul, J.-L., Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock *. Chest 124 (2003), 1900–1908.
Enomoto, T.M., Harder, L., Dynamic indices of preload. Crit. Care Clin. 26 (2010), 307–321.
Davidson, S., Pretty, C., Pironet, A., Kamoi, S., Balmer, J., Desaive, T., Chase, J.G., Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. Biomed. Eng. Online, 16, 2017.
Balmer, J., Pretty, C.G., Davidson, S., Mehta-Wilson, T., Desaive, T., Smith, R., Shaw, G.M., Chase, J.G., Clinically applicable model-based method, for physiologically accurate flow waveform and stroke volume estimation. Comput. Methods Progr. Biomed., 185, 2020, 105125.
Luecke, T., Pelosi, P., Clinical review: positive end-expiratory pressure and cardiac output. Crit. Care 9 (2005), 607–621.
Merx, M., Weber, C., Sepsis and the heart. Circulation 116 (2007), 793–802.
Balmer, J., Pretty, C., Davidson, S., Desaive, T., Kamoi, S., Pironet, A., Morimont, P., Janssen, N., Lambermont, B., Shaw, G.M., Chase, J.G., Pre-ejection period, the reason why the electrocardiogram Q-wave is an unreliable indicator of pulse wave initialization. Physiol. Meas., 39, 2018, 095005.
Yang, X.X., Critchley, L.A., Rowlands, D.K., Fang, Z., Huang, L., Systematic error of cardiac output measured by bolus thermodilution with a pulmonary artery catheter compared with that measured by an aortic flow probe in a pig model. J. Cardiothorac. Vasc. Anesth. 27 (2013), 1133–1139.
Kutty, S., Kottam, A.T., Padiyath, A., Bidasee, K.R., Li, L., Gao, S., Wu, J., Lof, J., Danford, D.A., Kuehne, T., et al. Validation of admittance computed left ventricular volumes against real-time three-dimensional echocardiography in the porcine heart. Exp. Physiol. 98 (2013), 1092–1101.
Sagawa, K., The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 63 (1981), 1223–1227.
Baan, J., Velde, E.T.V.D., Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ. Res. 62 (1988), 1247–1258.
Balmer, J., Smith, R., Pretty, C.G., Desaive, T., Shaw, G.M., Chase, J.G., Accurate end systole detection in dicrotic notch-less arterial pressure waveforms. J. Clin. Monit. Comput. 35 (2020), 79–88.
Hall, J.E., Guyton, A.C., Guyton and Hall Textbook of Medical Physiology. 2016, Elsevier.
Zou, K.H., O'Malley, A.J., Mauri, L., Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115 (2007), 654–657.
Altman, D.G., Bland, J.M., Measurement in medicine: the analysis of method comparison studies. The Statistician, 32, 1983, 307.
Malm, S., Frigstad, S., Sagberg, E., Larsson, H., Skjaerpe, T., Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography. J. Am. Coll. Cardiol. 44 (2004), 1030–1035.
Critchley, L.A., Yang, X.X., Lee, A., Assessment of trending ability of cardiac output monitors by polar plot methodology. J. Cardiothorac. Vasc. Anesth. 25 (2011), 536–546.
Smith, R., Balmer, J., Pretty, C.G., Mehta-Wilson, T., Desaive, T., Shaw, G.M., Chase, J.G., Incorporating pulse wave velocity into model-based pulse contour analysis method for estimation of cardiac stroke volume. Comput. Methods Progr. Biomed., 195, 2020, 105553.
Motulsky, H., Intuitive Biostatistics. 1995, Oxford University Press.
Glower, D.D., Spratt, J.A., Snow, N.D., Kabas, J.S., Davis, J.W., Olsen, C.O., Tyson, G.S., Sabiston, D.C., Rankin, J.S., Linearity of the frank-starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71 (1985), 994–1009.
Wiersema, U.F., Bihari, S., The frank-starling curve is not equivalent to the fluid responsiveness curve. Crit. Care Med. 45 (2017), e335–e336.
Jacob, R., Dierberger, B., Kissling, G., Functional significance of the frank-starling mechanism under physiological and pathophysiological conditions. Eur. Heart J. 13 (1992), 7–14.
Lelovas, P.P., Kostomitsopoulos, N.G., Xanthos, T.T., A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 53 (2014), 432–438.
Romagnoli, S., Ricci, Z., Quattrone, D., Tofani, L., Tujjar, O., Villa, G., Romano, S.M., Gaudio, A.R.D., Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit. Care, 18, 2014, 644.
Smith, R., Murphy, L., Pretty, C.G., Desaive, T., Shaw, G.M., Chase, J.G., Tube-load model: a clinically applicable pulse contour analysis method for estimation of cardiac stroke volume. Comput. Methods Progr. Biomed., 204, 2021, 106062.
Saugel, B., Cecconi, M., Wagner, J., Reuter, D., Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br. J. Anaesth. 114 (2015), 562–575.
Hofer, C., Furrer, L., Matter-Ensner, S., Maloigne, M., Klaghofer, R., Genoni, M., Zollinger, A., Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br. J. Anaesth. 94 (2005), 748–755.
Silvestry, S., The in vivo quantification of myocardial performance in rabbits: a model for evaluation of cardiac gene therapy. J. Mol. Cell. Cardiol. 28 (1996), 815–823.
Nixon, J.V., Murray, R.G., Leonard, P.D., Mitchell, J.H., Blomqvist, C.G., Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation 65 (1982), 698–703.
Takaoka, H., Suga, H., Goto, Y., Hata, K., Takeuchi, M., Cardiodynamic conditions for the linearity of preload recruitable stroke work. Heart Ves. 10 (1995), 57–68.