bone tissue engineering; dental bone regeneration; porous scaffold; biomaterials; 3D printing; computer modeling and simulation; in silico medicine; optimal design; porosity
Abstract :
[en] In biomaterial-based bone tissue engineering, optimizing scaffold structure and composition
remains an active field of research. Additive manufacturing has enabled the production of
custom designs in a variety of materials. This study aims to improve the design of calcium-phosphatebased
additively manufactured scaffolds, the material of choice in oral bone regeneration, by using a
combination of in silico and in vitro tools. Computer models are increasingly used to assist in design
optimization by providing a rational way of merging different requirements into a single design.
The starting point for this study was an in-house developed in silico model describing the in vitro
formation of neotissue, i.e., cells and the extracellular matrix they produced. The level set method was
applied to simulate the interface between the neotissue and the void space inside the scaffold pores.
In order to calibrate the model, a custom disk-shaped scaffold was produced with prismatic canals of
different geometries (circle, hexagon, square, triangle) and inner diameters (0.5 mm, 0.7 mm, 1 mm,
2 mm). The disks were produced with three biomaterials (hydroxyapatite, tricalcium phosphate,
and a blend of both). After seeding with skeletal progenitor cells and a cell culture for up to 21 days,
the extent of neotissue growth in the disks’ canals was analyzed using fluorescence microscopy.
The results clearly demonstrated that in the presence of calcium-phosphate-based materials, the
curvature-based growth principle was maintained. Bayesian optimization was used to determine
the model parameters for the different biomaterials used. Subsequently, the calibrated model was
used to predict neotissue growth in a 3D gyroid structure. The predicted results were in line with
the experimentally obtained ones, demonstrating the potential of the calibrated model to be used
as a tool in the design and optimization of 3D-printed calcium-phosphate-based biomaterials for
bone regeneration.
Research Center/Unit :
GIGA In silico medecine-Biomechanics Research Unit - ULiège d‐BRU - Dental Biomaterials Research Unit - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Van hede, Dorien ; Université de Liège - ULiège > Département des sciences dentaires > Biomatériaux dentaires
Barzegari, Mojtaba
Verlee, Bruno ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Metallic materials for additive manufacturing
Pirson, Justine
Nolens, Gregory ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Lambert, France ; Université de Liège - ULiège > Département des sciences dentaires > Chirurgie bucco-dentaire et parodontologie
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Model-Based Design to Enhance Neotissue Formation in Additively Manufactured Calcium-Phosphate-Based Scaffolds
Publication date :
03 December 2023
Journal title :
Journal of Functional Biomaterials
eISSN :
2079-4983
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Volume :
14
Issue :
563
Pages :
22
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This research was funded by the Walloon Region (SPW Recherche) through the BioWin
project BIOPTOS (ID: 7560) and the Win2Wal project B2Bone (2210023), the Fund for Scientific
Research Belgium FNRS-FRFC (project ID: T.0256.16), the Interreg VA Flanders—The Netherlands
project Prosperos (grant no.: 2014TC16RFCB046), and the European Union’s Horizon 2020 research
and innovation program via the European Research Council (ERC CoG INSITE 772418). The APC
was funded by the Walloon Region (SPW Recherche) through the Win2Wal project B2Bone (2210023).
Baldwin P. Li D.J. Auston D.A. Mir H.S. Yoon R.S. Koval K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery J. Orthop. Trauma 2019 33 203 213 10.1097/BOT.0000000000001420
Schmidt A.H. Autologous Bone Graft: Is It Still the Gold Standard? Injury 2021 52 S18 S22 10.1016/j.injury.2021.01.043 33563416
Bone|Definition, Anatomy, & Composition|Britannica Available online: https://www.britannica.com/science/bone-anatomy (accessed on 30 October 2023)
Peacock M. Calcium Metabolism in Health and Disease J. Am. Soc. Nephr 2010 5 S23 S30 10.2215/CJN.05910809 20089499
Foreman M.A. Gu Y. Howl J. Jones S. Publicover S.J. Group III Metabotropic Glutamate Receptor Activation Inhibits Ca2+ Influx and Nitric Oxide Synthase Activity in Bone Marrow Stromal Cells J. Cell. Physiol. 2005 204 704 713 10.1002/jcp.20353 15799084
Riddle R.C. Taylor A.F. Genetos D.C. Donahue H.J. MAP Kinase and Calcium Signaling Mediate Fluid Flow-induced Human Mesenchymal Stem Cell Proliferation Am. J. Physiol. Cell Physiol. 2006 290 C776 C784 10.1152/ajpcell.00082.2005
Hou X.-D. Zhang L. Zhou Z. Luo X. Wang T.-L. Zhao X.-Y. Lu B.-Q. Chen F. Zheng L. Calcium Phosphate-based Biomaterials for Bone Repair J. Funct. Biomater. 2022 13 187 10.3390/jfb13040187 36278657
Garot C. Bettega G. Picart C. Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics Adv. Funct. Mat. 2021 31 2006967 10.1002/adfm.202006967
Lin K. Sheikh R. Romanazzo S. Roohani I. 3D Printing of Bioceramic Scaffolds—Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives Materials 2019 12 2660 10.3390/ma12172660
Van hede D. Liang B. Anania S. Barzegari M. Verlee B. Nolens G. Pirson J. Geris L. 3d-printed Synthetic Hydroxyapatite Scaffold with in silico Optimized Macrostructure Enhances Bone Formation in vivo Adv. Funct. Mat. 2022 32 2105002 10.1002/adfm.202105002
Yang Y. Xu T. Bei H.P. Zhang L. Tang C.Y. Zhang M.Y. Xu C. Bian L. Yeung K.W.K. Fuh J.Y.H. Gaussian Curvature–driven Direction of Cell Fate Toward Osteogenesis with Triply Periodic Minimal Surface Scaffolds Proc. Natl. Acad. Sci. USA 2022 119 e2206684119 10.1073/pnas.2206684119
Li Y. Liu J. Zhong C. Zhao C.C. Shen J. Chen H. Ye M. Zhou J. Yang X. Gou Z. The Design of Strut/tpms-based Pore Geometries in Bioceramic Scaffolds Guiding Osteogenesis and Angiogenesis in Bone Regeneration. Mater Today Bio 2023 20 100667 10.1016/j.mtbio.2023.100667
Carlier A. Lammens J. Van Oosterwyck H. Geris L. Geris L. Computational Modeling of Bone Fracture Non-unions: Four Clinically Relevant Case Studies Silico Cell Tissue Sci. 2015 2 1 10.1186/s40482-015-0004-x 26709368
Perier-Metz C. Duda G.N. Checa S. Mechano-biological Computer Model of Scaffold-supported Bone Regeneration: Effect of Bone Graft and Scaffold Structure on Large Bone Defect Tissue Patterning Front. Bioeng. Biotechnol. 2020 8 585799 10.3389/fbioe.2020.585799 33262976
Sandino C. Checa S. Prendergast P.J. Lacroix D. Simulation of Angiogenesis and Cell Differentiation in a Cap Scaffold Subjected to Compressive Strains Using a Lattice Modeling Approach Biomaterials 2010 31 2446 2452 10.1016/j.biomaterials.2009.11.063
Sandino C. Lacroix D. A Dynamical Study of the Mechanical Stimuli and Tissue Differentiation Within a Cap Scaffold Based on Micro-ct Finite Element Models Biomech. Model. Mechanobiol. 2011 10 565 576 10.1007/s10237-010-0256-0 20865437
Coelho P. Hollister S.J. Flanagan C.L. Fernandes P.R. Bioresorbable Scaffolds for Bone Tissue Engineering: Optimal Design, Fabrication, Mechanical Testing and Scale-size Effects Analysis Med. Eng. Phys. 2015 37 287 296 10.1016/j.medengphy.2015.01.004 25640805
Dias M. Guedes J.M. Flanagan C.L. Hollister S.J. Fernandes P.R. Optimization of Scaffold Design for Bone Tissue Engineering: A Computational and Experimental Study Med. Eng. Phys. 2014 36 448 457 10.1016/j.medengphy.2014.02.010 24636449
Schamberger B. Roschger A. Ziege R. Anselme K. Ben Amar M. Bykowski M. Castro A.P.G. Cipitria A. Coles R. Dimova R. et al. Curvature in Biological Systems: Its Quantification, Emergence, and Implications Across the Scales Adv. Mater. 2023 35 e2206110 10.1002/adma.202206110
Rumpler M. Woesz A. Dunlop J. van Dongen J. Fratzl P. The Effect of Geometry on Three-dimensional Tissue Growth J. R. Soc. Interface 2008 5 1173 1180 10.1098/rsif.2008.0064
Bidan C.M. Kommareddy K.P. Rumpler M. Kollmannsberger P. Fratzl P. Dunlop J.W.C. Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds Adv. Healthc. Mat. 2013 2 186 194 10.1002/adhm.201200159
Guyot Y. Guyot Y. Papantoniou I. Chai Y.C. Bael S.V. Schrooten J. Geris L. Geris L. A Computational Model for Cell/ecm Growth on 3D Surfaces Using the Level Set Method: A Bone Tissue Engineering Case Study Biomech. Model. Mechanobiol. 2014 13 1361 1371 10.1007/s10237-014-0577-5 24696122
Alias M.A. Alias M.A. Buenzli P.R. Modeling the Effect of Curvature on the Collective Behavior of Cells Growing New Tissue Biophys. J. 2017 112 193 204 10.1016/j.bpj.2016.11.3203 28076811
Blanquer S. Werner M. Hannula M. Sharifi S. Lajoinie G. Eglin D. Hyttinen J. Poot A.A. Grijpma D.W. Surface Curvature in Triply-periodic Minimal Surface Architectures as a Distinct Design Parameter in Preparing Advanced Tissue Engineering Scaffolds Biofabrication 2017 9 025001 10.1088/1758-5090/aa6553 28402967
Buenzli P.R. Lanaro M. Wong C.S. McLaughlin M.P. Allenby M.C. Woodruff M.A. Simpson M.J. Cell Proliferation and Migration Explain Pore Bridging Dynamics in 3D Printed Scaffolds of Different Pore Size Acta Biomater. 2020 114 285 295 10.1016/j.actbio.2020.07.010
Bidan C.M. Kommareddy K.P. Rumpler M. Kollmannsberger P. Bréchet Y.J.M. Fratzl P. Dunlop J.W.C. How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth PLoS ONE 2012 7 e36336 10.1371/journal.pone.0036336
Osher S. Sethian J.A. Fronts Propagating with Curvature-dependent Speed: Algorithms Based on Hamilton-jacobi Formulations J. Comp. Phys. 1988 79 12 49 10.1016/0021-9991(88)90002-2
Hecht F. New development in FREEfem++ J. Num. Math. 2012 20 251 266 10.1515/jnum-2012-0013
Ribes A. Caremoli C. Salomé platform component model for numerical simulation Proceedings of the 31st Annual International Computer Software and Applications Conference (COMPSAC 2007) Beijing, China 24–27 July 2007 Volume 2 553 564 10.1109/COMPSAC.2007.185
Dapogny C. Frey P. Computation of the signed distance function to a discrete contour on adapted triangulation Calcolo 2012 49 193 219 10.1007/s10092-011-0051-z
Polyanin A.D. Zaitsev V.F. Moussiaux A. Handbook of First-Order Partial Differential Equations CRC Press Boca Raton, FL, USA 2001
Amestoy P.R. Duff I.S. L’Excellent J.Y. Koster J. MUMPS: A general purpose distributed memory sparse solver Applied Parallel Computing. New Paradigms for HPC in Industry and Academia Sørevik T. Manne F. Gebremedhin A.H. Moe R. Springer Berlin/Heidelberg, Germany 2000 Volume 1947 PARA 2000. Lecture Notes in Computer Science 10.1007/3-540-70734-4_16
Ahrens J. Geveci B. Law C. Paraview: An End-User Tool for Large Data Visualization The Visualization Handbook Elsevier Amsterdam, The Netherlands 2005 717 731 10.1016/B978-012387582-2/50038-1
Mockus J. Bayesian approach to global optimization: Theory and applications Springer Sci. Bus. Media 2012 37
Goffard R. Sforza T. Clarinval A.-M. Dormal T. Boilet L. Hocquet S. Cambier F. Additive Manufacturing of Biocompatible Ceramics Adv. Prod. Eng. Manag. 2013 8 96 10.14743/apem2013.2.157
Champion E. Sintering of calcium phosphate bioceramics Acta Biomater. 2013 9 5855 5875 10.1016/j.actbio.2012.11.029
Bouakaz I. Sadeghian Dehkord E. Meille S. Schrijnemakers A. Boschini F. Preux N. Hocquet S. Geris L. Nolens G. Grossin D. et al. 3D printed triply periodic minimal surfaces calcium phosphate bone substitute: The effect of porosity design on mechanical properties Ceram. Interntl. 2023 10.1016/j.ceramint.2023.10.238
Barzegari M. Geris L. An Open Source Crash Course on Parameter Estimation of Computational Models Using a Bayesian Optimization Approach J. Open Source Ed. 2021 4 89 10.21105/jose.00089
Mehrian M. Mehrian M. Guyot Y. Guyot Y. Papantoniou I. Olofsson S. Sonnaert M. Misener R. Geris L. Geris L. Maximizing Neotissue Growth Kinetics in a Perfusion Bioreactor: An in silico Strategy Using Model Reduction and Bayesian Optimization Biotech. Bioeng. 2018 115 617 629 10.1002/bit.26500 29205280
Kerckhofs G. Chai Y.C. Luyten F.P. Geris L. Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation Acta Biomater. 2016 35 330 340 10.1016/j.actbio.2016.02.037 26925963
Kommareddy K.P. Lange C. Rumpler M. Dunlop J.W.C. Manjubala I. Cui J. Kratz K. Lendlein A. Fratzl P. Two stages in three-dimensional in vitro growth of tissue generated by osteoblastlike cells Biointerphases 2010 5 45 52 10.1116/1.3431524 20831348
Van Bael S. Chai Y.C. Chai Y.C. Truscello S. Moesen M. Kerckhofs G. Van Oosterwyck H. Kruth J.-P. Schrooten J. The Effect of Pore Geometry on the in vitro Biological Behavior of Human Periosteum-derived Cells Seeded on Selective Laser-melted Ti6al4v Bone Scaffolds Acta Biomater. 2012 8 2824 2834 10.1016/j.actbio.2012.04.001 22487930
Winning L. Robinson L. Boyd A. El Karim I.A. Lundy F. Meenan B.J. Osteoblastic Differentiation of Periodontal Ligament Stem Cells on Non-stoichiometric Calcium Phosphate and Titanium Surfaces J. Biomed. Mater. Res. A 2017 105 1692 1702 10.1002/jbm.a.36044
Cun X. Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications Nanomaterials 2020 10 2070 10.3390/nano10102070
Jeong J. Kim J.H. Shim J.H. Hwang N.S. Heo C.Y. Heo C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration Biomater. Res. 2019 23 4 10.1186/s40824-018-0149-3
Milazzo M. Milazzo M. Contessi Negrini N. Contessi Negrini N. Scialla S. Marelli B. Farè S. Danti S. Danti S. Danti S. Additive Manufacturing Approaches for Hydroxyapatite-reinforced Composites Adv. Funct. Mater. 2019 29 1903055 10.1002/adfm.201903055
Bal Z. Kaito T. Korkusuz F. Yoshikawa H. Bone Regeneration with Hydroxyapatite-based Biomaterials Emerg. Mater. 2020 3 521 544 10.1007/s42247-019-00063-3
Tavoni M. Dapporto M. Tampieri A. Sprio S. Bioactive Calcium Phosphate-based Composites for Bone Regeneration J. Compos. Sci. 2021 5 227 10.3390/jcs5090227
Han Y. Wei Q. Chang P. Hu K. Okoro O.V. Shavandi A. Nie L. Three-dimensional Printing of Hydroxyapatite Composites for Biomedical Application Crystals 2021 11 353 10.3390/cryst11040353
Yazdanpanah Z. Johnston G.D. Cooper D.M.L. Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-of-the-art and Emerging Technologies Front. Bioeng. Biotechnol. 2022 10 824156 10.3389/fbioe.2022.824156
Nik Md Noordin Kahar N.N.F. Ahmad N. Jaafar M. Yahaya B.H. Sulaiman A.R. Abdul Hamid Z.A. A Review of Bioceramics Scaffolds for Bone Defects in Different Types of Animal Models: HA and Β -TCP Biomed. Phys. Eng. Express 2022 8 052002 10.1088/2057-1976/ac867f
Callens S.J.P. Emergent Collective Organization of Bone Cells in Complex Curvature Fields Nat. Commun. 2023 14 855 10.1038/s41467-023-36436-w
Callens S.J.P. Uyttendaele R.J.C. Fratila-Apachitei L.E. Zadpoor A.A. Substrate Curvature as a Cue to Guide Spatiotemporal Cell and Tissue Organization Biomaterials 2020 232 119739 10.1016/j.biomaterials.2019.119739
Hayashi K. Kishida R. Tsuchida A. Ishikawa A. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-based Grid Structure in Both Strength and Bone Regeneration ACS Appl. Mater. Interfaces 2023 15 34570 34577 10.1021/acsami.3c06263
Li Z. Chen Z. Chen X. Zhao R. Effect of Surface Curvature on the Mechanical and Mass-transport Properties of Additively Manufactured Tissue Scaffolds with Minimal Surfaces ACS Biomater. Sci. Eng. 2022 8 1623 1643 10.1021/acsbiomaterials.1c01438