Poster (Scientific congresses and symposiums)
Robust Ocean Subgrid-Scale Parameterizations Using Fourier Neural Operators
Mangeleer, Victor; Louppe, Gilles
2023Machine Learning and the Physical Sciences, NeurIPS 2023
Peer reviewed
 

Files


Full Text
NeurIPS_2023-FNOQG.pdf
Author postprint (1.45 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computer Science - Learning; Physics - Atmospheric and Oceanic Physics; Deep Learning; Fourier Neural Operators; Parameterizations; PyQG
Abstract :
[en] In climate simulations, small-scale processes shape ocean dynamics but remain computationally expensive to resolve directly. For this reason, their contributions are commonly approximated using empirical parameterizations, which lead to significant errors in long-term projections. In this work, we develop parameterizations based on Fourier Neural Operators, showcasing their accuracy and generalizability in comparison to other approaches. Finally, we discuss the potential and limitations of neural networks operating in the frequency domain, paving the way for future investigation.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Mangeleer, Victor ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Language :
English
Title :
Robust Ocean Subgrid-Scale Parameterizations Using Fourier Neural Operators
Publication date :
01 November 2023
Event name :
Machine Learning and the Physical Sciences, NeurIPS 2023
Event place :
New Orleans, United States
Event date :
December 15, 2023
Audience :
International
Peer reviewed :
Peer reviewed
Funding text :
This work was supported by Service Public de Wallonie Recherche under Grant No. 2010235 - ARIAC by DIGITALWALLONIA4.AI.
Available on ORBi :
since 28 November 2023

Statistics


Number of views
43 (12 by ULiège)
Number of downloads
16 (5 by ULiège)

Bibliography


Similar publications



Contact ORBi