power electronic converters; C-HIL; system identification; neural networks; polytopic models
Abstract :
[en] We propose to exploit a Controller Hardware-In-
the-Loop (C-HIL) digital twin of power electronics converters
to acquire data for deriving a model that is usable in system-
level studies. An enhanced neural network-based polytopic model
(a black-box model) is used for this purpose. The choice of this
model is motivated by its simplicity and the ability to conceal the
converter’s topology and control algorithm within its structure,
thus ensuring the data privacy of power electronics converter
manufacturers. The capability of the proposed approach to
capture the primary dynamics of converters is demonstrated,
and the approach is validated on an industrial DC-DC power
electronics converter.
Disciplines :
Electrical & electronics engineering Energy
Author, co-author :
Ewbank, Bastien ✱; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart-Microgrids
Colot, Antonin ✱; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart-Microgrids
Cornélusse, Bertrand ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart-Microgrids
Glavic, Mevludin ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart-Microgrids
✱ These authors have contributed equally to this work.
Language :
English
Title :
A C-HIL based data-driven DC-DC power electronics converter model for system-level studies
Alternative titles :
[fr] Modélisation de convertisseur DC-DC basée sur les données d'une simulation C-HIL pour les études de grande échelle
Publication date :
30 January 2024
Event name :
ISGT Europe 2023
Event place :
Grenoble, France
Event date :
22/10/23
Audience :
International
Main work title :
2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE)