
A C-HIL based data-driven DC-DC power
electronics converter model for system-level studies

1st Colot Antonina,b

Montefiore Institute
University of Liège

Liège, Belgium

2nd Ewbank Bastiena

Montefiore Institute
University of Liège
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Abstract—We propose to exploit a Controller Hardware-In-
the-Loop (C-HIL) digital twin of power electronics converters
to acquire data for deriving a model that is usable in system-
level studies. An enhanced neural network-based polytopic model
(a black-box model) is used for this purpose. The choice of this
model is motivated by its simplicity and the ability to conceal the
converter’s topology and control algorithm within its structure,
thus ensuring the data privacy of power electronics converter
manufacturers. The capability of the proposed approach to
capture the primary dynamics of converters is demonstrated,
and the approach is validated on an industrial DC-DC power
electronics converter.

Index Terms—power electronic converters, C-HIL, system
identification, neural networks, polytopic models

I. INTRODUCTION

Power electronics converter (PEC) manufacturers usually
do not disclose detailed converter models for confidentiality
reasons. This poses a challenge in deriving accurate and
efficient models of PECs needed for their control design and
system-level studies.

PECs model identification is challenging due to their
non-linear and time-varying nature emerging from multi-
ple switches configurations. Usually, a state-space averaging
method is used to remove time-varying characteristics and
describe converter dynamics through a non-linear mathemat-
ical model [1]. Non-linear system identification is a broad
subject offering a number of approaches [2]. Some existing
works focus on identifying PECs models for designing the best
controller [3]. They are either using a linear model obtained by
linearizing the state-space averaged model [4], or a non-linear
model using specific approaches such as the Hammerstein
models [1].

The scope of this paper is not to design a controller but
rather to model the whole manufacturer device for use in
system-level studies. Different techniques exist for this pur-
pose. For instance, in [5], the authors developed a full neural
network model of a buck converter. Although this technique
yields good performance, the inherent dynamics are hidden
within the neural network structure, which is not suitable for
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detecting causes of instabilities. In [6], authors proposed using
polytopic models, a combination of linear models allowing to
perform linear model analyses. However, the selection of linear
models and how they are combined is often left as a user
choice. In [7], an enhanced neural network-based polytopic
model combines the universal approximator characteristic of
neural networks with the linear models-based structure of
polytopic models. The main drawback is the requirements of
expensive measurement devices and measurement data that
may not be easily available.

In this work, we consider the approach introduced in [7] and
propose the use of the data acquisition on a C-HIL digital twin
to eliminate the drawback of that approach. C-HIL connects a
hardware control system, such as embedded microprocessors,
to a digital device that performs simulation in real-time while
exchanging signals with the hardware system. It allows for the
system to be tested in a closed loop with an accuracy close to
a complete hardware system experiment while conserving the
flexibility of a simulation tool. C-HIL modeling is preferred
to using the real power converter because it allows for fast
and accurate testing of the system in a controlled environment
without the need for costly and time-consuming physical tests.

While C-HIL models may not be appropriate for detailed
system-level studies due to the need for significant compu-
tational resources, they allow for rapid and accurate data
harvesting. We propose an approach where we extend the
usage of C-HIL models for building black-box models that
are suitable for system-level studies. We demonstrate the
effectiveness of our approach by applying it to an industrial
PEC and comparing the results with real measurements.

The paper is organized as follows. Section 2 provides an
overview of the proposed procedure for the identification of the
black-box model parameters. Section 3 describes the C-HIL
model used for data acquisition. Section 4 presents the results
of the experiments and compares the proposed model with real
measurements. Finally, Section 5 concludes, summarizes the
main findings, and discusses the potential applications.

II. ENHANCED NEURAL NETWORK-BASED POLYTOPIC
MODEL (PMnet)

To derive large signal black-box models of power electron-
ics converters, we use a model architecture proposed recently
in [7] and termed here as PMnet.979-8-3503-9678-2/23/$31.00 ©2023 IEEE



A. The approach overview [7]

The approach is based on polytopic models, where multiple
linear and time-invariant systems (LTI) responses are merged
using a weighting function. A neural network-based weighting
function is used for finding a better combination of LTI
systems than conventional polytopic models using generic
weighting functions [8]. The LTI systems considered are
infinite impulse responses (IIR) for which the regression vector
can be defined as

φ[n] =[−ŷ[n− 1], ...,−ŷ[n− na],

u[n], u[n− 1], ..., u[n− nb]]
T , (1)

where n is the time index.
The following tunable coefficients are considered:

θ = [a1, ..., ana
, b0, b1, ..., bnb

]T , (2)

such that the response of the LTI system at time n is:

ŷ[n] = θTφ[n]. (3)

For time-domain data, (3) can be solved using least squares
methods to find the best coefficients θ for minimizing discrep-
ancies between the actual system output y[n] and the predicted
system output ŷ[n] for every time index n. Introducing the time
delay operator q−1, the following notation is equivalent to (3):

ŷ[n] = (b0 + b1q
−1 + · · ·+ bnb

q−nb)u[n]

−(a1q
−1 + · · ·+ anaq

−na)ŷ[n]
(4)

and the input-output relation of a single-input single-output
system (SISO) is defined as:

G(q) =
b0 + b1q

−1 + · · ·+ bnb
q−nb

1 + a1q−1 + · · ·+ ana
q−na

. (5)

Black-box models of power converters can be seen as multi-
ports systems, as shown in Fig. 1, which are described as
multi-input multi-output systems (MIMO). Fig. 1 shows what
is considered within the black-box model. It embeds the
plant, with active and passive electrical components, and
the controller driving active components. y(t) corresponds to
measured signals used by the controller. αref are parameters
based on which the controller gives commands. Inputs u[n]
and outputs ŷ[n] can be reference values or electrical mea-
surements. A general form of a MIMO system can be defined
as:

ŷ[n] = G(q)u[n], (6)

where,

ŷ[n] = [ŷ1[n], ..., ŷny
[n]]T

u[n] = [u1[n], ..., unu
[n]]T (7)

G(q) =

 G11(q) · · · G1nu
(q)

...
. . .

...
Gny1(q) · · · Gnynu

(q)


The MIMO system G(q) is composed of a collection of linear
SISO systems, meaning that it is incapable of representing
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Fig. 1. An illustration of the considered black-box model.

nonlinear converter’s behaviors. Using a single MIMO system
to describe a converter’s response across its entire operating
range can thus result in suboptimal performance.

The concept of the PMnet is to create multiple MIMO
systems around different operating points, each with good
performance in the vicinity of the point where it was identified.
By wisely combining the responses of these MIMO systems,
significantly better results can be achieved than with a single
MIMO system alone. The various MIMO systems can be
combined using a weighting function:

ω = Ω(u[n]) ∈ [0, 1]N , (8)

where ω = [ω1, · · · , ωN ]T with N the number of MIMO
systems (named submodels hereafter). Every element of ω
takes a value between 0 and 1, and ||ω|| = 1 to ensure
one does not amplify nor attenuate the submodels responses.
If G(q) = [G1(q), · · · ,GN (q)]T collects the MIMO models
around the considered operating points, then the predicted
output of PMnet is:

ŷ[n] = ωTG(q)u[n], (9)

which exhibits a non-linear behavior with respect to u[n].

B. Application to power converters

To model power converters using PMnet, the first step is
to define the inputs u[n] and outputs y[n] of the multi-
ports system, as well as the input space U ∈ Rnu , which
determines the range of possible input values. The method
identifies 2nu submodels following an orthotope-based parti-
tion of U . For every submodels Gk(q), k = 1, · · · , N , the
input-output relations Gij(q), i = 1, · · · , ny, j = 1, · · · , nu

are identified for every input-output pair. The input-output
relations Gij(q) are ARMAX models, and time-domain data



are gathered for their identification by exciting one input at
a time using pseudo-random binary signals (PRBS), which
provide a sufficiently broad frequency spectrum for accurate
linear model identification [9]. The vector of submodels G(q)
is encapsulated in a neural network using a dynoNet structure
[10] along with the neural network-based weighting function
modeled as a multi-layer perceptron (MLP), as shown in
Fig. 1. Even though more sophisticated machine learning
methods exist, using a simple MLP in combination with linear
models provides the advantages of interpretability and minimal
computational burden. Once the neural network is trained over
a large dataset containing the converter’s dynamics over its
entire operating space, the method proposes new submodels
to be identified based on the analysis of the MLP.

To obtain the necessary data for the submodel identifica-
tion and the training of the neural network-based weighting
function, precise measurement devices are necessary to ensure
a sufficient signal-to-noise ratio. Often, these requirements
cannot be fulfilled in laboratories. C-HIL simulation is a viable
option as it allows easy testing while being very close to
reality. The next section outlines the various benefits of C-
HIL simulations.

III. DATA ACQUISITION ON A C-HIL DC-DC CONVERTER
DIGITAL TWIN

Although the methodology is applicable to any type of
power electronics converter we focus on its application to an
industrial DC-DC converter. The first reason is the relative
simplicity of the DC-DC PECs, which allows us to be more
confident in the analysis of our results. The other reason is
that a detailed description of a commercial PEC in a C-HIL
may be more informative for potential users.

In this section, we first provide our motivations for using
C-HIL for model identification. This is followed by a detailed
description of the implementation using a DC-DC converter.

A. C-HIL motivation

Several categories of HIL simulation have emerged over
time [11]. The one used for this paper is C-HIL which
interfaces the hardware of control with a real-time digital
simulator. The plant of the system is therefore contained in
the real-time digital simulator compared to other categories
such as Power-HIL (P-HIL). In P-HIL, part of the plant can
be outside the simulator as hardware but still interface with it
[11].

The tool used for this paper is a C-HIL platform developed
by Typhoon HIL Inc. [12], specialized for the simulation of
power electronics and power systems in general. Since the first
version [13], the tools have been used in many applications.
For instance, C-HIL has shown their utility and benefits in
[14] and [15], by helping to tune the parameters of a new
controller for STATCOM, or by validating the architecture of
a grid resynchronization algorithm for grid forming inverters.
The fidelity of the C-HIL simulation compared to a complete
hardware system has been studied and confirmed in [16]. This
is a first motivation to use C-HIL in our approach. The second
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Fig. 2. DC-DC converter topology to model for C-HIL simulation. Pink and
blue components are added for the tests described in section IV

is related to the ability to preserve manufacturers data privacy
as described in the following subsection.

B. Power converter twin model description

To test the proposed method, an industrial DC-DC PEC
is chosen. In this way, the results can be compared with
measurements of a physical system considered as a reference
to be approached.

The PEC has two ports, and it is bidirectional, which means
that the power can flow in both directions. For convenience,
in the rest of the paper, one port is named the input port (In)
and the other the output port (Out). The DC-DC converter
has been designed to regulate a power transfer in order to
balance each port voltage around 380 V. The basic idea is that
if the voltage is greater on the input port than on the output
one, the power should flow from the input toward the output
and inversely. This behavior is designed for DC microgrid
applications where some bus voltages have to be regulated to
stay close to a specified nominal voltage.

In practice, the condition governing the power transfer is
more complex than mentioned before. The user can tune some
parameters to specify threshold voltages the control algorithm
uses to decide if a port should sink, inject power, or even not
exchange power. Indeed these threshold values define three
operation ranges for each port: a state where the port will
ask power from the other port due to an undervoltage, a state
where the port will give power to the other due to overvoltage,
and a dead band where the port asks nothing. The resulting
power setpoint for the control of the converter is the sum of
each independent power need.

Except for this mechanism of power setpoint computation,
the rest of the controller is entirely unknown. A C-HIL
simulation is, therefore, ideally suited as the manufacturer only
has to provide the actual controller board with the associate
firmware already loaded on the chip to obtain a digital twin
of the converter running in real-time. The control board has to
be interfaced correctly with the C-HIL emulator, and most
importantly, the emulator has to contain a model of the
converter plant. In this case, the model of the converter plant
is the true electrical circuit whose topology is represented in
Fig. 2.

C. Configuration and data acquisition

The converter is a two-port circuit, thus four variables
describe entirely the system behavior: Vout, Vin, Iout, and



Iin. A current and a voltage from different ports are chosen
as u[n]. The outputs y[n] are the remaining ports’ voltage and
current.

y[n] =

(
Iin[n]
Vout[n]

)
u[n] =

(
Vin[n]
Iout[n]

)
This definition of the MIMO system is classic for two-

port circuits and corresponds to finding the inverse hybrid
parameters of a voltage amplifier. Indeed our DC-DC converter
can be seen as a voltage amplifier from one port to another
as the control modulates voltage through transistor switching
(as illustrated in Fig. 3). The converter’s bidirectional charac-
teristic can also match the analogy with the voltage amplifier
by considering that the converter is a special voltage amplifier
that can decrease or increase the voltage and where either a
positive or negative current can flow.

The choice of inputs and outputs allows browsing all
operating points which include descriptive dynamics of the
system during the data acquisition.
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Fig. 3. Two port equivalent representation of the DC-DC converter.

It is important to notice that in practice the converter could
be configured with different threshold voltages on each port.
These threshold voltages are used by the control algorithm.
This implies that the black-box model that we derive in
this paper is bound with the chosen set of parameters. For
simplicity, the same parameters are imposed on each port to
obtain a symmetrical system. However, the designation in and
out are still used for reference.

IV. SIMULATION CONDITIONS AND THE RESULTS

A. Simulation conditions

To harvest data for the PMnet algorithm, controlled current
and voltage sources are added in the C-HIL emulator model
to be able to excite our inputs u[n] with external PRBS. A
python code automates the data acquisition of u[n] and y[n]
signals during the C-HIL simulation. It uses API instructions
included in the software platform and designed to speed up
and facilitate this type of testing that R&D validation teams
often have to perform. Voltage and current signals are sampled
at 100kHz and the capture lasts 30 seconds for each operating
point. PRBS have a maximum frequency of 100Hz to extract
slow dynamics that are relevant for system-level studies.

B. Results

Two cases are presented:
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Fig. 4. Comparison between the measurements and two different modeling
techniques when the DC-DC converter is connected to R-L series circuit.

1) a R-L series load to evaluate the effectiveness of the used
modeling approach, and

2) a Small DC system, to assess the proposed methodology
for system-level studies.

1) R-L series: We evaluate the effectiveness of our model-
ing technique by comparing its performance with that of C-
HIL modeling and measurements collected during a specific
experiment. The converter is supplied with a constant input
voltage, and its output port is connected to a R-L series circuit
at time 0s. The output current Iout is the response of the R-L
series circuit to a voltage Vout.

In Fig. 4, we observe that PMnet exhibits a greater voltage
nadir than in measurements and C-HIL modeling. However,
the overall behavior is similar, and the steady-state values are
less than one volt apart for output voltage Vout and superpose
for the input current Iin. We also see that PMnet is not
capable of representing fast transients caused by quick changes
in the duty cycle as it is an averaged model. Nevertheless,
the primary objective of PMnet is rather to describe the
general behavior of converters when connected to various
system configurations, and not predicting fast transients that
are irrelevant for system-level studies.

2) Small DC system: We assess the suitability of PMnet for
performing system-level studies by comparing its performance
to that of the HIL modeling technique on the system of Fig. 2.
A lithium-ion battery is on the input side of the DC-DC
converter. It is modeled as described in [17]. A variable current
source and a variable R-L series load are connected on the
output side.

To demonstrate the efficacy of PMnet in system-level stud-
ies, we conduct a test wherein we vary the values of three
components over time and observe the voltage and current
responses. Initially, we consider a simple R-L series circuit
with varying values, followed by setting the inductance to zero
to obtain a pure resistance load. Subsequently, we add a current
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source to reverse the power flow and gauge the reliability of
PMnet during battery charging. Finally, we reconnect a R-L
series to demonstrate the power flow reversal, concluding the
scenario.

By the analysis of the results of PMnet and the compar-
ison with the C-HIL modeling technique (Fig. 5), we found
that PMnet accurately replicates the results. The only slight
discrepancy is observed in the time interval from the fourth
and the fifth second, where PMnet slightly underestimates the
transient rise of the output voltage but eventually reaches the
same steady-state value. As for the input current Iin, PMnet
follows the general trend perfectly. Despite not being trained
with data from the converter response when connected to a
R-L series circuit and a battery, PMnet accurately describes
the general behavior. This indicates that the model performs
reliably under different conditions, confirming it as a viable
option for system-level studies.

V. CONCLUSION

Our approach for modeling power converters extends the
usage of C-HIL simulations for data harvesting in order to
derive black-box models. We draw the following conclusions:

• PMnet can accurately represent the dynamic behavior
of a converter in various system configurations while
maintaining data privacy.

• The modeling technique is highly suitable for simulating
complex systems, as it has a low computational burden.

• C-HIL is a viable option for generating the data needed
to identify PMnet model.

In our future research efforts, we will consider the appli-
cation of the proposed modeling techniques to other types of
power electronics converters (creating a library of models) and
its assessment for use in system-level studies using realistically
sized systems.
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