Modeling the daily dynamics of grass growth of several species according to their functional type, based on soil water and nitrogen dynamics: Gras-sim model definition, parametrization and evaluation
model; functional group; grassland; biomass; nitrogen; water
Abstract :
[en] Gras-Sim model, through the environmental conditions and the dynamics of water and nitrogen in the soil, enables the prediction of the biomass yield in permanent grasslands. It was developed from existing models and simulates the dynamics of several grass species grouped into plant functional types (PFT) A and B. Model inputs include weather data, fertilizer application, soil data, and cutting management. In contrast to previous models, Gras-Sim proposes a complete nitrogen balance at the field scale as well as a new formalism to estimate actual evapotranspiration based on the crop coefficient (Kc) for a better prediction of biomass production even under moderate stress. Gras-Sim was evaluated in this paper on the basis of data from experiments conducted between 2010 and 2018, on 3 sites fairly representative of the soil and climate conditions in Wallonia (Belgium). The relative root mean square error (RRMSE), normalized deviation (ND), and model efficiency (EF) across all cuts, sites, and PFTs were 29%, 2%, and 71% respectively, for biomass production. Gras-Sim is a simple and efficient model that can be used as a starting point for the design of a decision support tool for better management of permanent grasslands.
Dumont, Benjamin ✱; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Bindelle, Jérôme ✱; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Modeling the daily dynamics of grass growth of several species according to their functional type, based on soil water and nitrogen dynamics: Gras-sim model definition, parametrization and evaluation
O'Donovan, M., Lewis, E., O'Kiely, P., Requirements of future grass-based ruminant production systems in Ireland. Ir. J. Agric. Food Res. 50 (2011), 1–21.
Thornton, P.K., Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 365 (2010), 2853–2867, 10.1098/rstb.2010.0134.
Piseddu, F., Bellocchi, G., Picon-Cochard, C., Mowing and warming effects on grassland species richness and harvested biomass: meta-analyses. Agron. Sustain. Dev., 41, 2021, 74, 10.1007/s13593-021-00722-y.
Han, W., Chen, L., Su, X., Liu, D., Jin, T., Shi, S., Li, T., Liu, G., Effects of soil physico-chemical properties on plant species diversity along an Elevation Gradient over alpine grassland on the Qinghai-Tibetan plateau, China. Front. Plant Sci., 13, 2022, 822268, 10.3389/fpls.2022.822268.
Li, W., Gan, X., Jiang, Y., Cao, F., Lü, X.-T., Ceulemans, T., Zhao, C., Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environ. Pollut., 309, 2022, 119720, 10.1016/j.envpol.2022.119720.
Cruz, P., Duru, M., Therond, O., Theau, J.P., Ducourtieux, C., Jouany, C., Khaled, R.A.H., Ansquer, P., Une nouvelle approche pour caractériser les prairies naturelles et leur valeur d'usage. Fourrages (Frankfort On The Main), 2002, 335.
Díaz, S., Purvis, A., Cornelissen, J.H.C., Mace, G.M., Donoghue, M.J., Ewers, R.M., Jordano, P., Pearse, W.D., Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3 (2013), 2958–2975, 10.1002/ece3.601.
Cruz, P., De Quadros, F.L.F., Theau, J.P., Frizzo, A., Jouany, C., Duru, M., Carvalho, P.C.F., Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the South of Brazil. Rangel. Ecol. Manag. 63 (2010), 350–358, 10.2111/08-016.1.
Cruz, P., Theau, J.P.J.P., Lecloux, E., Jouany, C., Duru, M.M., Typologie fonctionnelle de graminées fourragères pérennes: une classification multitraits. Fourrages (Frankfort On The Main), 2010, 11.
Graux, A.-I., Modélisation des impacts du changement climatique sur les écosystèmes prairiaux. Voies d'adaptation des systèmes fourrragers, PhD thesis., 2011, Université Blaise Pascal - Clermont-Ferrand II https://theses.hal.science/tel-00653360. (Accessed 18 September 2023)
Petersen, K., Kraus, D., Calanca, P., Semenov, M.A., Butterbach-Bahl, K., Kiese, R., Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. Eur. J. Agron., 128, 2021, 126306, 10.1016/j.eja.2021.126306.
Puche, N.J.B., Kirschbaum, M.U.F., Viovy, N., Chabbi, A., Potential impacts of climate change on the productivity and soil carbon stocks of managed grasslands. PLoS One, 18, 2023, e0283370, 10.1371/journal.pone.0283370.
Filipiak, M., Gabriel, D., Kuka, K., Simulation-based assessment of the soil organic carbon sequestration in grasslands in relation to management and climate change scenarios. Heliyon, 9, 2023, e17287, 10.1016/j.heliyon.2023.e17287.
Schapendonk, A.H.C.M., Stol, W., van Kraalingen, D.W.G., Bouman, B.A.M., LINGRA, a sink/source model to simulate grassland productivity in Europe. Eur. J. Agron. 9 (1998), 87–100, 10.1016/S1161-0301(98)00027-6.
Swieter, A., Moenickes, S., Ohnmacht, B., Greef, J.-M., Feuerstein, U., Monitoring, analysis and modeling of yield and quality dynamics of Lolium perenne varieties for biogas production. Sokolović, D., Huyghe, C., Radović, J., (eds.) Quant. Traits Breed. Multifunct. Grassl. Turf, 2014, Springer Netherlands, Dordrecht, 325–330, 10.1007/978-94-017-9044-4_44.
Calvache, I., Balocchi, O., Arias, R., Alonso, M., The use of thermal time to describe and predict the growth and nutritive value of Lolium perenne L. And bromus valdivianus. Phil, Agronomy., 11, 2021, 774, 10.3390/agronomy11040774.
Hutchings, N.J., Gordon, I.J., A dynamic model of herbivore–plant interactions on grasslands. Ecol. Model. 136 (2001), 209–222, 10.1016/S0304-3800(00)00426-9.
McCall, D.G., Bishop-Hurley, G.J., A pasture growth model for use in a whole-farm dairy production model. Agric. Syst. 76 (2003), 1183–1205, 10.1016/S0308-521X(02)00104-X.
Ruelle, E., Hennessy, D., Delaby, L., Development of the Moorepark St Gilles grass growth model (MoSt GG model): a predictive model for grass growth for pasture based systems. Eur. J. Agron. 99 (2018), 80–91, 10.1016/j.eja.2018.06.010.
Woodward, S.J.R., Van Oijen, M., Griffiths, W.M., Beukes, P.C., Chapman, D.F., Identifying causes of low persistence of perennial ryegrass (Lolium perenne) dairy pasture using the Basic Grassland model (BASGRA). Grass Forage Sci. 75 (2020), 45–63, 10.1111/gfs.12464.
Jouven, M., Carrere, P., Baumont, R., Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures. 1. Model description. Grass Forage Sci. 61 (2006), 112–124, 10.1111/j.1365-2494.2006.00515.x.
Piseddu, F., Martin, R., Movedi, E., Louault, F., Confalonieri, R., Bellocchi, G., Simulation of multi-species plant communities in perturbed and nutrient-limited grasslands: development of the growth model ModVege. Agronomy, 12, 2022, 2468, 10.3390/agronomy12102468.
Moulin, T., Perasso, A., Gillet, F., Modelling vegetation dynamics in managed grasslands: responses to drivers depend on species richness. Ecol. Model. 374 (2018), 22–36, 10.1016/j.ecolmodel.2018.02.013.
Moulin, T., Perasso, A., Calanca, P., Gillet, F., DynaGraM: a process-based model to simulate multi-species plant community dynamics in managed grasslands. Ecol. Model., 439, 2021, 109345, 10.1016/j.ecolmodel.2020.109345.
Calanca, P., Deléglise, C., Martin, R., Carrère, P., Mosimann, E., Testing the ability of a simple grassland model to simulate the seasonal effects of drought on herbage growth. Field Crops Res. 187 (2016), 12–23, 10.1016/j.fcr.2015.12.008.
Bonesmo, H., Bélanger, G., Timothy yield and nutritive value by the CATIMO model: I. Growth and nitrogen. Agron. J. 94 (2002), 337–345, 10.2134/agronj2002.3370.
Liu, C., Sun, G., McNulty, S.G., Noormets, A., Yuan, F., Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrol. Earth Syst. Sci. 21 (2017), 311–322, 10.5194/hess-21-311-2017.
Lemaire, G., Salette, J., Sigogne, M., Terrasson, J.-P., Relation entre dynamique de croissance et dynamique de prélèvement d'azote pour un peuplement de graminées fourragères. I.–Etude de l'effet du milieu. Agronomie 4 (1984), 423–430, 10.1051/agro:19840503.
Lemaire, G., Denoix, A., Croissance estivale en matière sèche de peuplements de fétuque élevée (Festuca arundinacea Schreb.) et de dactyle (Dactylis glomerata L.) dans l'Ouest de la France. I. Etude en conditions de nutrition azotée et d'alimentation hydrique non limitantes. Agronomie 7 (1987), 373–380, 10.1051/agro:19870602.
Marino, M.A., Mazzanti, A., Assuero, S.G., Gastal, F., Echeverría, H.E., Andrade, F., Nitrogen dilution curves and nitrogen use efficiency during winter–Spring growth of annual ryegrass. Agron. J., 96, 2004, 1, 10.2134/agronj2004.0601.
CRA-W/Agromet, Réseau Pameseb, (n.d.). https://agromet.be/en/reseau-pameseb/(accessed September 8, 2021).
Géoportail Wallonie, Carte des sols de Wallonie, (n.d.). http://geoapps.wallonie.be/Cigale/Public/#CTX=CNSW#BBOX=−43265.277796961105.466058.6575175624.-9775.717478795585.267045.1486629367 (accessed December 15, 2021).
Bah, B.B., Engels, P., Colinet, G., Bock, L., Bracke, C., Veron, P., Légende de la Carte Numérique des Sols de Wallonie (Belgique). Sur base de la légende originale de la Carte des sols de la Belgique de l'IRSIA à 1/20.000. 2005.
Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S., Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 56 (2016), 246–260, 10.1016/j.rser.2015.11.058.
Beaudoin, N., Launay, M., Sauboua, E., Ponsardin, G., Mary, B., Evaluation of the soil crop model STICS over 8 years against the “on farm” database of Bruyères catchment. Eur. J. Agron. 29 (2008), 46–57, 10.1016/j.eja.2008.03.001.
Stratigea, D., Makropoulos, C., Balancing water demand reduction and rainfall runoff minimisation: modelling green roofs, rainwater harvesting and greywater reuse systems. Water Supply 15 (2015), 248–255, 10.2166/ws.2014.105.