Poster (Scientific congresses and symposiums)
Score-based Data Assimilation for a Two-Layer Quasi-Geostrophic Model
Rozet, François; Louppe, Gilles
2023Machine Learning and the Physical Sciences Workshop (NeurIPS 2023)
Peer reviewed
 

Files


Full Text
sda-qg.pdf
Author postprint (5.82 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Statistics - Machine Learning; Physics - Atmospheric and Oceanic Physics
Abstract :
[en] Data assimilation addresses the problem of identifying plausible state trajectories of dynamical systems given noisy or incomplete observations. In geosciences, it presents challenges due to the high-dimensionality of geophysical dynamical systems, often exceeding millions of dimensions. This work assesses the scalability of score-based data assimilation (SDA), a novel data assimilation method, in the context of such systems. We propose modifications to the score network architecture aimed at significantly reducing memory consumption and execution time. We demonstrate promising results for a two-layer quasi-geostrophic model.
Disciplines :
Computer science
Author, co-author :
Rozet, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Language :
English
Title :
Score-based Data Assimilation for a Two-Layer Quasi-Geostrophic Model
Publication date :
2023
Event name :
Machine Learning and the Physical Sciences Workshop (NeurIPS 2023)
Event place :
New Orleans, United States - Louisiana
Event date :
15-12-2023
Audience :
International
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 20 November 2023

Statistics


Number of views
23 (3 by ULiège)
Number of downloads
9 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi