Article (Scientific journals)
NA-SODINN: a deep learning algorithm for exoplanet image detection based on residual noise regimes
Cantero Mitjans, Carles; Absil, Olivier; Dahlqvist, Carl-Henrik et al.
2023In Astronomy and Astrophysics, 680, p. 86
Peer Reviewed verified by ORBi
 

Files


Full Text
Cantero23_NA-SODINN.pdf
Publisher postprint (41.46 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
techniques: image processing; methods: data analysis; methods: statistical; planets and satellites: detection; techniques: high angular resolution
Abstract :
[en] Supervised deep learning was recently introduced in high-contrast imaging (HCI) through the SODINN algorithm, a convolutional neural network designed for exoplanet detection in angular differential imaging (ADI) datasets. The benchmarking of HCI algorithms within the Exoplanet Imaging Data Challenge (EIDC) showed that (i) SODINN can produce a high number of false positives in the final detection maps, and (ii) algorithms processing images in a more local manner perform better. This work aims to improve the SODINN detection performance by introducing new local processing approaches and adapting its learning process accordingly. We propose NA-SODINN, a new deep learning binary classifier based on a convolutional neural network (CNN) that better captures image noise correlations in ADI-processed frames by identifying noise regimes. Our new approach was tested against its predecessor, as well as two SODINN-based hybrid models and a more standard annular-PCA approach, through local receiving operating characteristics (ROC) analysis of ADI sequences from the VLT/SPHERE and Keck/NIRC-2 instruments. Results show that NA-SODINN enhances SODINN in both sensitivity and specificity, especially in the speckle-dominated noise regime. NA-SODINN is also benchmarked against the complete set of submitted detection algorithms in EIDC, in which we show that its final detection score matches or outperforms the most powerful detection algorithms.Throughout the supervised machine learning case, this study illustrates and reinforces the importance of adapting the task of detection to the local content of processed images.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Precision for document type :
Review article
Disciplines :
Space science, astronomy & astrophysics
Computer science
Author, co-author :
Cantero Mitjans, Carles  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Dahlqvist, Carl-Henrik  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Télécommunications
Language :
English
Title :
NA-SODINN: a deep learning algorithm for exoplanet image detection based on residual noise regimes
Publication date :
15 December 2023
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences
Volume :
680
Pages :
A86
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Name of the research project :
NNExI
Funders :
EU - European Union
Commentary :
Copyright ESO 2023, published by EDP Sciences - https://www.aanda.org/articles/aa/full_html/2023/12/aa46085-23/aa46085-23.html
Available on ORBi :
since 13 November 2023

Statistics


Number of views
37 (5 by ULiège)
Number of downloads
19 (3 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi