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ABSTRACT

Context. Supervised deep learning was recently introduced in high-contrast imaging (HCI) through the SODINN algorithm, a con-
volutional neural network designed for exoplanet detection in angular differential imaging (ADI) datasets. The benchmarking of HCI
algorithms within the Exoplanet Imaging Data Challenge (EIDC) showed that (i) SODINN can produce a high number of false posi-
tives in the final detection maps, and (ii) algorithms processing images in a more local manner perform better.

Aims. This work aims to improve the SODINN detection performance by introducing new local processing approaches and adapting
its learning process accordingly.

Methods. We propose NA-SODINN, a new deep learning binary classifier based on a convolutional neural network (CNN) that better
captures image noise correlations in ADI-processed frames by identifying noise regimes. The identification of these noise regimes
is based on a novel technique, named PCA-pmaps, which allowed us to estimate the distance from the star in the image from which
background noise started to dominate over residual speckle noise. NA-SODINN was also fed with local discriminators, such as signal-
to-noise ratio (S/N) curves, which complement spatio-temporal feature maps during the model’s training.

Results. Our new approach was tested against its predecessor, as well as two SODINN-based hybrid models and a more standard
annular-PCA approach, through local receiving operating characteristics (ROC) analysis of ADI sequences from the VLT/SPHERE
and Keck/NIRC-2 instruments. Results show that NA-SODINN enhances SODINN in both sensitivity and specificity, especially in
the speckle-dominated noise regime. NA-SODINN is also benchmarked against the complete set of submitted detection algorithms in
EIDC, in which we show that its final detection score matches or outperforms the most powerful detection algorithms.

Conclusions. Throughout the supervised machine learning case, this study illustrates and reinforces the importance of adapting the

task of detection to the local content of processed images.

Key words. techniques: image processing — methods: data analysis — methods: statistical — planets and satellites: detection —

techniques: high angular resolution

1. Introduction

The direct imaging of exoplanets through 10-m class ground-
based telescopes is now a reality of modern astrophysics (e.g.
Bohn et al. 2021; Chauvin et al. 2017; Keppler et al. 2018; Marois
et al. 2008b, 2010; Rameau et al. 2013; Wagner et al. 2016).
Reaching this milestone is the result of significant advances in
the field of high-contrast imaging (HCI). For instance, extreme
adaptive optics (AO) is routinely used during observations to cor-
rect image degradation caused by the Earth’s atmosphere (Snik
et al. 2018). In the same way, dedicated HCI instruments, such
as Subaru/SCExAO (Lozi et al. 2018) or VLT/SPHERE (Beuzit
et al. 2019), make use of state-of-the-art coronagraphs (Soummer
2005; Mawet et al. 2009) in order to block out the starlight and
mitigate the huge flux ratio (or contrast) between a host star and
its companions. Despite all of these approaches, a high-contrast
image is still affected by different additive sources of noise, such
as photon noise associated with residual stellar light and ther-
mal background emission, speckle noise associated with residual
atmospheric turbulence, or residual aberrations that arise in the
optical train of the telescope and instrument (Males et al. 2021).
Speckles are scattered starlight blobs in the image that can mimic
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the expected signal of an exoplanet in both shape and contrast.
Therefore, beyond dedicated instrumental developments, power-
ful image post-processing algorithms are needed to disentangle
true companions from speckles. In order to help algorithms
achieve this goal, different observing strategies have been pro-
posed, the most popular being angular differential imaging (ADI,
Marois et al. 2006). An ADI dataset consists of a sequence of
high-contrast images acquired in pupil-stabilized mode, where
the instrument de-rotator tracks the telescope pupil instead of
the field, in such a way that the instrument and optics in the tele-
scope stay aligned while the image rotates in time due to the
Earth’s rotation. As a result, speckles associated with the tele-
scope and instrument optical train remain mostly fixed in the
focal plane while the astrophysical signals rotate around the star
as a function of the parallactic angle.

Currently, there exist a plethora of post-processing detection
algorithms that work on ADI sequences. Most of these algo-
rithms belong to the point spread function (PSF) subtraction
family, which aims to model the speckle field and subtract it from
each frame in the ADI sequence, derotate the residual images
according to the parallactic angles, and finally collapse them into
a final frame (Marois et al. 2008a), commonly referred to as a
processed frame. Examples of these techniques are the locally
optimized combination of images (LOCI, Lafreniere et al. 2007)
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and its variants TLOCI (Marois et al. 2014) and MLOCI
(Wahhaj et al. 2015), principal component analysis (PCA,
Soummer et al. 2012; Amara & Quanz 2012), the low-rank plus
sparse decomposition (LLSG, Gomez Gonzalez et al. 2016),
and the non-negative matrix factorization (NMF, Ren et al.
2018). PSF subtraction is usually followed by a detection algo-
rithm, which can be either based on an signal-to-noise ratio
(S/N) map (Mawet et al. 2014) or on a more recent technique,
such as the standardized trajectory intensity mean (STIM, Pairet
et al. 2019) or the regime-switching model (RSM, Dahlqvist
et al. 2020). Another family of algorithms, based on an inverse
problem approach, relies on directly modelling the expected
planetary signal and tracking it along the ADI sequence. This
is typically done by estimating the contrast of the potential plan-
etary signal via a maximum likelihood estimation. Examples of
these methods include ANDROMEDA (Cantalloube et al. 2015),
the forward model matched filter (FMMEF, Ruffio et al. 2017),
the exoplanet detection based on patch covariances (PACO,
Flasseur et al. 2018), or the temporal reference analysis of planets
(TRAP, Samland et al. 2021). Recently, post-processing
approaches based on supervised machine learning have emerged
in HCI. Gomez Gonzalez et al. (2018) introduced the SODIRF
and SODINN machine learning models, which are two binary
classifiers that use a random forest and a convolutional neural
network (CNN), respectively, to distinguish between compan-
ion signatures and residual noise in processed frames. Yip
et al. (2020) trained a generative adversarial network with real
data from the NICMOS camera (Hubble Space Telescope) to
obtain a suitable dataset for training a CNN discriminative
model to image companions. More recently, Gebhard et al.
(2022) proposed a modified version of the half-sibling regression
(Scholkopf et al. 2016) using a ridge regression with general-
ized cross-validation. Also, Flasseur et al. (2023) presented deep
PACO, an adaptation of the PACO algorithm to supervised learn-
ing through a CNN architecture, which resulted in an improve-
ment on both the detection and characterization of exoplanets.
A large fraction of these techniques was benchmarked in
the context of the Exoplanet Imaging Data Challenge (EIDC,
Cantalloube et al. 2020), the first platform designed for a
fair and common comparison of post-processing algorithms
for exoplanet detection and characterization in HCI. From the
whole set of conclusions provided by the first EIDC phase
(Cantalloube et al. 2020), we relied on two of them to moti-
vate this paper. First, we observed that detection algorithms that
exploit the local behaviour of image noise obtained the high-
est detection score in the challenge leaderboard. Second, we
found that supervised machine learning algorithms produced a
relatively high number of false positives, compared with more
standard algorithms. Thereby, with the aim of enhancing the
supervised machine learning models, for this study, we explored
a new stratified noise approach, through which they can bet-
ter exploit noise statistics in the ADI dataset. This approach
relies on the existence of two noise regimes in the processed
frame: a speckle-dominated residual noise regime close to the
star, and a background-dominated noise regime further away.
Our goal is to spatially identify these regimes in the processed
frame through the study of their statistical properties, and then
adapt the SODINN neural network to work separately in each
of them in order to improve its detection performance. There-
fore, in Sect. 2 we first revisit noise statistics in HCI and present
a novel statistical method that allowed us to empirically delimit
noise regimes in processed frames. Then, in Sect. 3, we intro-
duce the noise-adaptive SODINN (or NA-SODINN) detection
algorithm, a neural network architecture optimized to work on
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noise regimes. Our deep learning method was also fed with
local discriminators, such as S/N curves, that contain additional
physical-motivated features and help the trained model to better
disentangle an exoplanet signature from speckle noise. In Sect. 4,
NA-SODINN is evaluated through local ROC analysis using a
series of ADI datasets obtained with various instruments. Dur-
ing the evaluation, NA-SODINN is benchmarked against other
state-of-the-art HCI detection algorithms. Section 5 concludes
the paper.

2. Noise regimes in processed ADI images

The term local is often used in image processing to describe a
process applicable to a smaller portion of the image, such as the
neighbourhood of a pixel, in which pixel values exhibit a certain
amount of correlation. In HCI, defining image locality implies a
good understanding of the physical information captured in the
image. A common way to define locality is linked to the noise
distribution along the image field of view. For example, after
some pre-processing steps (including background subtraction),
a high-contrast image is composed of three independent com-
ponents: (1) residual starlight under the form of speckles; (2)
the signal of possible companions; and (3) the statistical noise
associated with all light sources within the field of view, gen-
erally dominated by background noise in infrared observations.
In these raw images, exoplanets are hidden because starlight
speckles and/or background residuals dominate at all angular
separations, and act as a noise source for the detection task.
According to their origin, starlight speckles can be classified as
instrumental speckles (Hinkley et al. 2007; Goebel et al. 2016),
which are generally long-lived and therefore referred to as quasi-
static speckles, and atmospheric speckles, which have a much
shorter lifetime (Males et al. 2021). Speckle intensity is known to
follow a modified Rician probability distribution (Soummer et al.
2007). Here, the locality of the noise is driven by the distance to
the host star (Marois et al. 2008a), which already gives an indi-
cation on how local noise will be defined in a processed image.
Consequently, a large fraction of post-processing algorithms
currently work and process noise on concentric annuli around
the star. For example, the annular-PCA algorithm (Absil et al.
2013; Gomez Gonzalez et al. 2016) performs PSF subtraction
with PCA on concentric annuli. Nevertheless, more sophisticated
local approaches have recently been proposed in the literature.
For instance, both the TRAP algorithm (Samland et al. 2021)
and the half-sibling regression algorithm (Gebhard et al. 2022)
take into account the symmetrical behaviour of speckles around
the star when defining pixel predictors for the model.

In this section, we aim to introduce an alternative local pro-
cessing, well-suited for the SODINN framework, as explained
later in the paper, based on the spatial stratification of the
processed frame into (at least) two noise regimes. For illus-
trative purposes, we make use, in this section, of two ADI
sequences chosen from the set of nine ADI sequences used in
the EIDC (Cantalloube et al. 2020); see Table A.1 for more
information about the EIDC datasets. Our two ADI sequences,
referred to as sph2 and nrc3, were respectively obtained with
the VLT/SPHERE instrument (Beuzit et al. 2019) and the
Keck/NIRC-2 instrument (Serabyn et al. 2017). They have the
advantage of not containing any confirmed or injected compan-
ions, which makes them appropriate for algorithm development
and tests that rely on the injection of exoplanet signatures in
the image.
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2.1. Spatial noise structure after ADI processing

Performing PSF subtraction on each high-contrast image in
an ADI sequence generates a sequence of residual images
where speckle noise is significantly reduced and partly whitened
(Mawet et al. 2014). After derotating these residual images based
on their parallactic angle and combining them into a final frame,
the remaining speckles are further attenuated and whitened. This
final frame is commonly referred to as processed frame. Because
of the different post-processing steps and the whitening operator
that removes correlation effects, the S/N map technique (Mawet
et al. 2014), the industry standard for exoplanet detection in pro-
cessed frames, makes use of the central limit theorem to state
that residual noise in processed frames follows a Gaussian dis-
tribution, an assumption that even today has not been proven
experimentally. From practice, it is known that this Gaussian
assumption leads to high false positive detection rates (Marois
et al. 2008a; Mawet et al. 2014) since residual speckle noise
in processed frames is never perfectly Gaussian, and still dom-
inates at small angular separations. Pairet et al. (2019) found
experimentally that the tail decay of residual noise close to the
star is better explained by a Laplacian distribution than a Gaus-
sian distribution. Later, Dahlqvist et al. (2020) reached the same
conclusion by applying a Gaussian and a Laplacian fit to the
residuals of PCA-, NMF-, and LLSG-processed frames. These
experimental results suggest the presence of two residual noise
regimes in the processed frame: a non-Gaussian noise regime
close to the star, dominated by residual speckle noise, and a
Gaussian regime further away, dominated by background noise.

2.2. Identification of noise regimes

Based on our understanding of the local statistics of noise in
a processed frame, we aim now to spatially delimit both noise
regimes in the image. To do so, we try to find the best radial
distance approximation from the star where residual speckle
noise starts to become negligible compared to background noise
(Fig. 1), which is assumed to be uniform over the whole field
of view.

2.2.1. Paving the image field of view

In order to find the radius at which background noise starts to
dominate in the image, we study the evolution of noise statistics
as a function of angular separation. We first pave the full field of
view with concentric annuli of 1/D width (Fig. 1). Each annulus
contains pixels that are expected to be drawn from the same par-
ent population (Marois et al. 2008a), although we acknowledge
that this working hypothesis cannot be completely fulfilled when
diffraction patterns associated with the spiders of the telescope
or the wind-driven halo are present in the image (Cantalloube
et al. 2019). We note that, in the presence of residual speck-
les, pixels that contain information from the same speckle are
all spatially correlated. When background noise dominates over
residual speckle noise, we can instead assume that all pixels in an
annulus are independent, since photon noise occurs on a pixel-
wise basis. However, this assumption of independence can be
non-optimal when bad pixels are interpolated, since it can still
leave spatially correlated footprints. In HCI, a common proce-
dure to guarantee the independence of samples when performing
statistical analysis is to work by integrating pixel intensities on
non-overlapping circular apertures of A/D diameter within a
given annulus (Mawet et al. 2014), as shown in Fig. 2. This

) Speckle noise
[:] Background noise

Fig. 1. Processed frame from sph2 dataset with both speckle-dominated
and background-dominated residual noise regimes and their annular
split (black circle). The best approximation of this split is what we aim
to find in this section.
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Fig. 2. Rolling annulus with N = 100 over the processed frame of Fig. 1.
Top: examples of the first rolling one (in red), the ninth rolling one (in
blue) and the eighteenth rolling one (in green) displayed over the central
pixel pavement in the image. Bottom: a complete set of rolling annuli
shown in a straight line that represents the distance from the star. The
three rolling annuli shown in the top figure are displayed with the same
colours.
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Fig. 3. Statistical moments evolution based on a rolling annulus which paves the full annular-PCA processed frame. The top and bottom rows refer,
respectively, to the sph2 and nrc3 ADI sequences. Colour curves on each subplot refer to a different principal component ranging from one to
thirty. The bold curve on top of each subplot indicates the average of the thirty PCs, and PC=1 and PC=20 are illustrated with specific symbols. In

the case of sph2, grey areas highlight the inner working angle (IWA).

procedure is based on the characteristic spatial scale of residual
speckles (~1/D size). However, Bonse et al. (2022) have recently
showed that, in the presence of speckle noise, this independence
assumption on non-overlapping apertures is incorrect. Instead,
they propose to (i) only consider the central pixel value in each
circular aperture to produce a more statistically independent set
of pixels and (ii) possibly repeat the experiment with various
spatial arrangements of the non-overlapping apertures to reduce
statistical noise in the measured quantities. We follow this rec-
ommendation, and therefore, for the rest of this study, we define
our annulus samples of both speckle- and background-dominated
noise regimes by only taking the central pixel value for each
non-overlapping circular aperture (Fig. 2). This approach also
minimizes the possible effect of bad pixel interpolation.

One limitation in using non-overlapping apertures is the
small sample statistics problem, especially at small angular dis-
tances (Mawet et al. 2014). Small samples generally lead to
conclusions that are not strong enough statistically speaking. In
order to avoid this issue, we propose to use the concept of a
rolling annulus (Fig. 2) that always contains a minimum number
of independent pixels N. These N pixels are the central pix-
els of apertures that pave the field of view and are included in
the rolling annulus. It can be understood as an annular window
around the star for which the inner boundary moves in 14/D
steps, while the outer boundary is set to achieve the criterion on
the minimum number of independent pixels. An example of this
process with N = 100 pixels is shown in Fig. 2, where the first
rolling annulus that achieves the condition, composed of all cen-
tral pixels of the non-overlapping apertures between 1 and 64/D,
is displayed in red over the processed frame. Then, the rolling
annulus moves away from the star changing its boundaries, as
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illustrated with the black line at the bottom of Fig. 2. For exam-
ple, the ninth rolling annulus (in blue) with N = 100 is located
between 9 and 10 A/D, and the eighteenth rolling annulus (in
green) is at 181/D distance, achieving the N = 100 condition
without the need to expand the region to another annulus. In
this paper, we select N = 100 minimum samples, considered to
be the minimum number of samples required to reach reliable
statistical power and significance for our statistical analysis.

2.2.2. Statistical moments

Once the processed frame is paved, we first study the evolution
of different statistical moments, such as the variance (amount
of energy), the skewness (distribution symmetry) and the excess
kurtosis (distribution tails), as a function of the angular separa-
tion from the star for different number of principal components
(PCs), ranging from component one to thirty. Figure 3 shows this
evolution for the case of the sph2 (top row) and nrc3 (bottom
row) datasets, on which we applied annular-PCA to produce the
processed frames. We observe that the variance decreases as the
rolling annulus moves away from the star. This trend is common
to both datasets and is what we would expect in physical terms,
as the intensity of residual speckles varies rapidly with angular
separation, especially at short distances. We also see that this
behaviour is dampened when using a larger number of principal
components, which leads to more effective speckle subtraction.
Regarding the skewness analysis, we adopt the convention of
Bulmer (1979), which states that a distribution is symmetrical
when its skewness ranges from —0.5 to 0.5. For both datasets,
we clearly observe a loss of symmetry at small angular sepa-
rations. The presence of speckles can provoke this distribution
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asymmetry due to their higher intensity values in comparison
with the background. Looking now at the excess kurtosis in
Fig. 3, we observe a strong leptokurtic' trend for the entire set
of PCs at small angular separations and for both datasets. This
perfectly matches the fact that a Laplacian distribution fits bet-
ter the tail decay of residual noise (Pairet et al. 2019), since it is,
by definition, leptokurtic. At higher angular separations, instead,
we observe differences between both datasets. In the sph2 pro-
cessed frames, we detect one mesokurtic regime approximately
between 6 and 134/D followed by a weaker leptokurtic regime
approximately between 14 and 181/D. For nrc3, we only observe
one mesokurtic regime at a large distance from the star, beyond
the third rolling annuli (Fig. 3).

2.2.3. Combined normality test analysis

Another way to explore the spatial distribution of noise is to
use hypothesis testing. Assuming that residual speckle noise is
non-Gaussian by nature, while background noise is Gaussian
(see Sect. 2.1), we can assess the probability of the null hypoth-
esis Hj that data are normally distributed, that is, explained
solely by background noise. We rely on a combination of a
series of normality tests, making use of four of the most pow-
erful tests: the Shapiro-Wilk test (sw, Shapiro & Wilk 1965),
the Anderson-Darling test (ad, Anderson & Darling 1952), the
D’Agostino-K2 test (ak, D’Agostino & Pearson 1973), and the
Lilliefors test (/i, Lilliefors 1967). This choice is motivated by the
fact that they have been well-tested in many studies, including
Monte-Carlo simulations (Yap & Sim 2011; Marmolejo-Ramos
& Gonzélez-Burgos 2013; Ahmad & Khan 2015; Patricio et al.
2017; Wijekularathna et al. 2019; Uhm & Yi 2021). It is worth-
while to remark that the goal is not to benchmark the robustness
of all these tests. Our purpose, instead, is to collect a larger
amount of statistical evidence for the same hypothesis, that can
then be combined to increase the statistical power when making
a decision regarding the null hypothesis. Moreover, regarding
the statistical requirements, the only constraints to be verified
before using these tests are the independence and sufficient size
of the sample. In terms of sample size, Jensen-Clem et al. (2017)
shows that normality tests can exhibit lower statistical power
with sample sizes under 100 observations. Here, the indepen-
dence and size constraints are met by the proposed approach to
pave the field of view, using the central pixels of non-overlapping
apertures within rolling annuli of N = 100 apertures. Addition-
ally, we follow for this analysis the recommendation of Bonse
et al. (2022) to perform our statistical tests with various spatial
arrangements for the non-overlapping apertures. We leverage the
fact that different aperture arrangements within the same annu-
lus contain valuable noise diversity that can directly benefit the
analysis when making a decision about the null hypothesis.

Our analysis for testing the null hypothesis Hy within a spe-
cific rolling annulus of the processed frame is thus composed as
follows. We begin by randomly selecting a normality test # from
the set 7~ = {sw, ad, ak, li}. Subsequently, we randomly choose
an angular displacement 8 of circular apertures for each single
annulus within the rolling annulus. Assuming N, single annuli,
then, ® = {6;}i=1..n,,,)» Where © thus represents a random aper-
ture arrangement. After defining the sample of central pixels
X(0) for this arrangement, we use the selected statistical test ¢ to
compute the p-value associated to X(®). We denote this p-value

! In statistics, a leptokurtic distribution has a kurtosis greater than the
kurtosis of a normal distribution (mesokurtic), and it is associated in
HCI to increase the false alarm rate.

as p(t, ®). This process of randomly selecting both a normality
test # and an aperture arrangement X(®) to compute p(t, ®) is
repeated m times for the same rolling annulus, which produces
m p-values that are not statistically independent. The final step
involves using the harmonic mean, as proposed by Vovk & Wang
(2020), to combine these m p-values into a global p-value noted
p. By comparing p with a predefined significance threshold «,
we can finally reject the null hypothesis H if p < a.

By repeating this procedure for each rolling annulus in the
processed frame and for various numbers of principal compo-
nents in our annular-PCA post-processing algorithm, we can
build what we call the PCA p-value map, or PCA-pmap for short.
Figures 4a and 5a show examples of PCA-pmaps for the sph2
and nrc3 datasets, respectively. For both, we only considered the
first 29 principal components to produce the annular-PCA space
(y-axis in figures). Each cell in a PCA-pmap shows, through
the number in white and its background colour, the combined
p-value p with m = 300. P-values below the pre-defined thresh-
old « are marked with yellow stars on the figures. In order to
minimize the Type I error (false rejection of the null hypoth-
esis), we selected the standard threshold value @ = 0.05 in
Figs. 4a and 5a. Afterward, we calculate the fraction of yellow
star markers, or Hj rejection rate, along the PCA domain for each
rolling annulus in PCA-pmaps. We then classify rolling annuli as
speckle-dominated when they contain more than 50% of stars.
Figures 4b and 5b show this selection criterion by plotting the
H rejection rate per rolling annulus. In the case of sph2 (Fig. 4),
we clearly observe the presence of four noise regimes beyond the
inner working angle: a first regime dominated by non-Gaussian
noise due to residual speckles between 5 and 7 A/D distance,
a second regime where noise is more consistent with Gaussian
statistics, probably dominated by background noise between 8
and 14 A/D, a third regime with non-Gaussian noise between 15
and 16 1/ D, where speckles are dominating again as we approach
the limit of the well-corrected area produced by the SPHERE
adaptive optics (Cantalloube et al. 2019), and finally, a fourth
regime more consistent with Gaussian statistics again between
17 and 19 A/D. The speckle-dominated regime at 15-16 A1/D
would also explain the slightly leptokurtic behaviour observed
at those separations in Fig. 3. For the nrc3 dataset (Fig. 5), we
only observe two noise regimes, with speckle noise dominating
approximately between 1 and 3 A/D distance, and background
noise dominating beyond 31/D (Fig. 5b). The white dotted line
and circles overplotted on the PCA-pmaps will be explained later
in Sect. 3.2.

2.3. Field-of-view splitting strategy

At this point, we can see that, for both sph2 and nrc3, similar esti-
mations of the noise regimes are reached using the two proposed
methods: the study of statistical moments and the PCA-pmaps.
Figure 3 provides a first insight into the spatial structure of resid-
ual noise and, thereby, brings us closer to estimating the radius
split (Fig. 1) in the processed frame. Indeed, the significant
increase of the variance together with the leptokurtic behaviour
and the positively skewed trend at small angular separations,
suggest that this regime is still dominated by residual starlight
speckles. On the other hand, PCA-pmaps contain more statis-
tical diversity through the combination of p-values with which
very similar regime estimations are reached. Thus, both analyses
are complementary from a statistical perspective. Yet, from now
on, we elect to use PCA-pmaps to define the noise regime as a
baseline, since they can also be used for other purposes.
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Fig. 4. Combined normality test analysis for the sph2 ADI sequence. (@) PCA-pmap showing the combined p-value p both as a colour code and as
values, as a function of the distance to the star through the rolling annulus (x axis) and the number of principal components used in the PCA-based
PSF subtraction (y axis). Yellow star markers indicate when the null hypothesis H, (Gaussian noise) is rejected. The white dashed line shows the
90% CEVR at each rolling annulus. White circles in bold highlight the principal component that maximizes the S/N of fake companion recoveries.
(b) Percentage of yellow star markers, or Hy rejection, (y axis) for each rolling annulus (x axis) on the PCA-pmap. The dashed black line highlights
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The noise analysis described above suggests that noise
regions should be defined on a case-by-case basis. Regarding
the nature of residual noise in a processed frame, our tests do
not necessarily mean that residual speckle noise is non-Gaussian
in the innermost, individual annuli. Instead, compound distribu-
tions could be at the origin of the non-Gaussian noise behaviour
in the innermost rolling annuli. Compound distributions refer
to the sampling of random variables that are not independent
and identically distributed. For small angular separations (red
annulus in Fig. 2) where residual speckle noise dominates over
background noise, the samples are taken from distributions that
might be Gaussian, but with different variances. If they are Gaus-
sian and their variance follows an exponential distribution, then
according to Gneiting (1997), the compound distribution follows
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a Laplacian, as observed by Pairet et al. (2019). This explana-
tion, which is not a proof, would reconcile the belief that residual
speckle noise should be locally Gaussian. Because of the small
sample size, there is, however, no proper way to test this inter-
pretation on individual annuli in the innermost regions. For all
these reasons, we believe that splitting the processed frame field
of view in different noise regimes is duly motivated, and, in the
next sections, we detail how we have implemented this splitting
to improve the detection of exoplanets.

3. Implementation

So far, we have focused on understanding the spatial structure of
residual noise in the processed frame, which has allowed us to
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empirically define the regions dominated by speckle and back-
ground noise. Now, we aim to use this local noise approach in
order to help post-processing algorithms enhance their detec-
tion performance. Most HCI algorithms have the potential of
being applied separately to different noise regimes. Here, we are
particularly interested in the case of deep learning. Neural net-
works are good candidates to capture image noise dependencies
due to their ability to recognize hidden underlying relationships
in the data and make complex decisions. In order to maximize
the added value of working in noise regimes and showing its
benefits for the detection task, we propose to revisit SODINN
(Gomez Gonzalez et al. 2018), the first supervised deep learning
algorithm for exoplanet imaging. In this section, we first pro-
vide a brief overview of SODINN, and then present our novel
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NA-SODINN algorithm, an adaptation of SODINN working on
noise regimes, aided with additional handcrafted features.

3.1. Baseline model: The SODINN algorithm

SODINN stands for Supervised exOplanet detection via Direct
Imaging with a deep Neural Network. It is a binary classifier
that uses a convolutional neural network (CNN) to distinguish
between two classes of square patch sequences: sequences that
contain an exoplanet signature (c,, the positive class), and
sequences that contain only residual noise (c_, the negative
class). Figure 6 (bottom) shows an example sequence for each
class, where the individual images are produced with vari-
ous numbers of principal components. The first image in the
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Fig. 6. SODINN labelling stage. Top: steps for generating MLAR sam-
ples (see the text for more details). N; is the number of frames in the
ADI , and N, is the number of principal components in the cube of
processed frames and therefore in the final MLAR sequence. Bottom:
example of an MLAR sequence of each class.

sequence corresponds to the first principal component, while
the last corresponds to a number of principal components with
which a maximum of 90% cumulative explained variance ratio
(CEVR) is captured. Gomez Gonzalez et al. (2018) refer to
these patch sequences as Multi-level Low-rank Approximation
Residual (MLAR) samples.

3.1.1. Generation of the training set

The first step in SODINN is to build a training dataset com-
posed of thousands of different ¢, and c. MLAR sequences.
A c, sequence is formed through three consecutive steps that
are summarized in Fig. 6. (i) First, a PSF-like source is injected
at a random pixel within a given annulus of the ADI sequence.
The flux of this injection is the result of multiplying the nor-
malized off-axis PSF by a scale factor randomly chosen from a
pre-estimated flux range that corresponds to a pre-defined range
of S/N in the processed frame. The estimation of injection flux
ranges is explained in Appendix B. (ii) Singular value decom-
position (SVD, Halko et al. 2011) is then used on this synthetic
ADI sequence to perform PSF subtraction for different numbers
of singular vectors (or principal components), thereby produc-
ing a series of processed frames. (iii) Finally, square patches
are cropped around the injection coordinates for each processed
frame. This forms a series of ¢, MLAR sequences, where each
sequence contains the injected companion signature for differ-
ent numbers of principal components. The patch size is usually
defined between 1.5 and 2 times the FWHM of the PSF.
Likewise, we construct a c_ sequence by extracting MLAR
sequences for pixels where no fake companion injection is per-
formed. The number and order of singular vectors are the same
as those used for the ¢, sequences. For the case of c_ sequences,
SODINN must deal with the fact that, using only one ADI
sequence, we obtain a single realization of the residual noise,
so that the number of c_ sequences we can grab per annuli is
not enough to train the neural network without producing over-
fitting. SODINN solves this problem by increasing the number
of c_ sequences in a given annulus through a dedicated data aug-
mentation strategy that is based on four consecutive steps: (i)
build a first subset by randomly grabbing c_ sequences centred
on up to ten percent of the total number of pixels; (ii) build a sec-
ond subset by grabbing all the available pixels in the annulus and
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flip the sign of the parallactic angle when derotating the residual
images, a common practice in HCI to remove possible planetary
sources while preserving noise properties; (iii) randomly pick
groups of three c_ sequences from the two subsets and average
them to produce new sequences; (iv) finally, perform random
rotations and small shifts of the c_ sequences obtained in the
previous step to create even more diversity. The same rotation
angle and shift are applied to all the slices of a given MLAR
sequence. This data augmentation process ensures that we only
use augmented c_ sequences for the training.

This procedure of generating c, and c_ sequences is repeated
thousands of times for each annulus in the field of view. When
the entire field of view is covered, MLAR sequences of the same
class from all annuli are mixed, and the balanced training set
(same amount of ¢, and c_ samples) is built.

3.1.2. Training of the network

The training set is then used to train the SODINN neural
network. This produces a detection model that is specific for
the ADI sequence from where MLAR sequences were gener-
ated. The SODINN network architecture is composed of two
concatenated convolutional blocks. The first block contains a
convolutional-LSTM (Shi et al. 2015) layer with 40 filters and a
hyperbolic tangent activation function, and kernel and stride size
of (1,1), followed by a spatial 3D dropout (Srivastava et al. 2014)
and a MaxPooling-3D (Boureau et al. 2010). The second block
contains the same except that it now has 80 filters, and kernel
and stride size of (2,2). These first two blocks extract the feature
maps, capturing all spatio-temporal correlations between pixels
of MLAR sequences. After that, they are flattened and sent to a
fully connected dense layer of 128 hidden units. Then, a rectifier
linear unit (ReLU, Nair & Hinton 2010) is applied to the output
of this layer followed by a dropout regularization layer. Finally,
the output layer of the network consists of a sigmoid unit, which
provides a normalized value between O and 1. This value is usu-
ally referred as a probability, however, it is known in computer
vision that the output of a deep learning architecture normalized
between 0 and 1 with classical activation functions (e.g. the sig-
moid function) tends to be more binary, and therefore, it cannot
be interpreted as a real probability. For this reason, from now on,
we refer to this output score as the model confidence. The net-
work weights are initialized randomly using a Xavier uniform
initializer, and are learned by back-propagation with a binary
cross-entropy cost function:

L(Yn: Gn) = Z(yn In(@,) + (1 = y,) In(1 = §n)), ey

where y, is the true label of the n MLAR sample and i, is
the predicted confidence that this n™ MLAR sample belongs
to the ¢, class. SODINN uses an Adam optimizer with a step
size of 0.003, and mini-batches of 64 training samples. An early
stopping condition monitors the validation loss. The number
of epochs is usually set to 15, with which SODINN generally
reaches ~99.9% validation accuracy (Gomez Gonzalez et al.
2018).

3.1.3. Inference

Once the detection model is trained and validated, it is finally
used to find real exoplanets in the same ADI sequence. Because
the input of the model is an MLAR structure, we first map the
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entire field of view by creating MLAR samples (with no injec-
tion) centred on each pixel. These MLAR samples have never
been processed during the training since the c_ class MLAR
samples in the training set are built by augmentation (Sect. 3.1.1).
The goal of the trained model is therefore to assign a confidence
value between 0 (no confidence) and 1 (maximum confidence)
for each of these new MLAR sequences to belong to the c,
class. Computing a confidence score for each individual pixel
leads to a confidence map, from which exoplanet detection can
be performed by choosing a confidence threshold.

3.2. Model adaptation: The NA-SODINN algorithm

In SODINN, the training set is built by mixing all MLAR
sequences from the same class, generated on every annulus in
the field of view. In the presence of different noise regimes, this
way of proceeding can complicate the training of the model, as
the statistics of an MLAR sequence generated in the speckle-
dominated regime differ from a sequence of the same class
generated in the background-dominated regime instead. In order
to deal with this, we train an independent SODINN detection
model per noise regime instead of a unique model for the full
frame field of view. Thereby, each detection model is only trained
with those MLAR sequences that contain statistical properties
from the same (or similar) probabilistic distribution function.
Therefore, our region of interest in the field of view is now
smaller. This means that the number of pixels available to gen-
erate MLAR sequences is reduced, and therefore, that we are
losing noise diversity in comparison with a model that is trained
in the full frame. However, this loss of diversity comes with the
benefit of better capturing the statistics of noise within a same
noise regime, which improves the training.

3.2.1. Adding S/N curves to the network

In order to compensate for the noise diversity loss associated
with the training on individual noise regimes, we attempt to
reinforce the training by means of new handcrafted features. An
interesting discriminator between the c,. and c_ classes, which is
also physically motivated, comes from their behaviour in terms
of signal-to-noise ratio (S/N). The most accepted and used S/N
definition in the HCI literature is from Mawet et al. (2014). It
states that, given a 14/D wide annulus in a processed frame at
distance r (in A/D units) from the star, paved with N = 2zr non-
overlapping circular apertures (see Fig. 2), the S/N for one of
these apertures is defined as

X — Xn-1

S B\ S
[ 1

on-14J1 + 37

where X; is the aperture flux photometry in the considered test
aperture, Xy_; the average intensity over the remaining N — 1
apertures in the annulus, and on_; their standard deviation.
In order to maximize the S/N, image processing detection
algorithms need to be tuned through finding the optimal con-
figuration of their parameters (see e.g. Dahlqvist et al. 2021b).
Here, rather than optimizing the algorithm parameters, we
use the fact that we can leverage the behaviour of the S/N
versus some of the algorithm parameters in our deep learning
approach. This is especially the case for the number of principal
components used in the PSF subtraction. We define an S/N
curve as the evolution of the S/N computed for a given circular
aperture as a function of the number of principal components

S/N = 2

~ —— Companion S/N curve
..\ —— Noise S/N curve

S/N

1 6 11 16 21 26 31 36 41 46
Principal component

Fig. 7. S/N curves generated from the sph2 cube of processed frames
at a 81/D distance from the star. Curves in blue contain the exoplanet
signature and curves in red just residual noise. The flux of injections
is randomly selected from a range that is between one and three times
the level of noise. Dotted curves over populations show the mean of
each class.

(Gomez Gonzalez et al. 2017). Figure 7 shows an example
of 1000 S/N curves generated from the sph2 ADI sequence.
We clearly see in Fig. 7 that, in the presence of an exoplanet
signature (blue curves), the S/N curve first increases and then
decreases, which leads to the appearance of a peak at a given
number of principal components. This behaviour, capturing
the competition between noise subtraction and signal self-
subtraction, was already documented elsewhere (e.g. Gomez
Gonzalez et al. 2017). The peak in the S/N curve indicates
the number of principal components for which the contrast
between the companion and the residual noise in the annulus is
maximum. Hereafter, we denote as k the principal component at
which this S/N peak is located.

For a given 1-FWHM circular aperture, the MLAR sequence
(no matter the class) and the S/N curve are linked from a physi-
cal point of view. Actually, the evolution of the S/N as a function
of the number of principal components can be readily extracted
from intermediate products used in the production of the train-
ing dataset. Therefore, the information conveyed through the S/N
curve is already partly contained in the MLAR patches. But
while the MLAR sequence contains localized information on the
signal and noise behaviour, the S/N curve conveys annulus-wise
information, obtained through aperture photometry. Indeed, each
aperture’s S/N estimation depends on the noise in the rest of the
annulus (Eq. (2)), so it also contains information that connects
with other circular apertures at the same angular separation from
the star. This dependency is not captured in MLAR sequences.
S/N curves make this rich summary statistics directly available
to the neural network to improve the neural network training.
One complication in using S/N curves in the training relates to
data augmentation, which is mandatory to build up a sufficiently
large training dataset for SODINN. Because these augmenta-
tion operations modify the intensity and distribution of pixels
in the MLAR sequence, there is no direct way to compute the
associated S/N curve of an augmented MLAR sequence through
Eq. (2). To deal with this, we make simplifying assumptions for
each augmentation operation in SODINN: (i) image rotations do
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Fig. 8. Illustration of the three steps within the NA-SODINN algorithm working flow. Left: generation of the training set. NA-SODINN uses the
annular-PCA algorithm to perform PSF subtraction and produce the cube of processed frames. Then, it detects residual noise regimes by applying
the PCA-pmap technique to this cube, and builds both the training and inference datasets at each regime, which are composed of both MLAR
samples and S/N curves. Middle: model training. NA-SODINN trains as many detection models as detected noise regimes using their respective
training datasets (for the sake of simplicity, we have not duplicated the central deep neural network). This case contains two noise regimes, the
speckle- and background-dominated noise regimes, so that two models are trained. Right: detection map. Finally, NA-SODINN uses each trained
model to assign a confidence value to belong to the ¢, class to each pixel of the corresponding noise regime field of view.

not affect the S/N curve as the same pixels are kept in the final
sequence, (ii) averaging two sequences can be approximated as
averaging their S/N curves, and (iii) image shifts do not affect
the S/N curve as long as the shift is sufficiently small.

By adding the noise regime approach and the S/N curves to
SODINN, we are building a new detection algorithm. We refer
to this novel framework, depicted in Fig. 8, as Noise-Adaptive
SODINN, or NA-SODINN for short. As its predecessor, NA-
SODINN is composed of the same three steps: producing the
training set from an ADI sequence (Sect. 3.2.2), training a detec-
tion model with this training set, and applying the model to find
companions in the same ADI sequence (Sect. 3.2.3).

3.2.2. Generation of the training set

NA-SODINN generates as many training sets as detected resid-
ual noise regimes. Each of these sets is composed of MLAR
sequences and their corresponding S/N curves generated from
the corresponding noise regime, including data augmentation.
Unlike SODINN, which makes use of the CEVR to define
the appropriate range of principal components to generate the
MLAR sequences (Gomez Gonzalez et al. 2018), the selection of
the principal components for producing both MLAR sequences
and S/N curves in NA-SODINN is instead determined through
a novel metric derived from the PCA-pmap. For each rolling
annulus, the PCA-pmap can be used to estimate the principal
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component k that maximizes the S/N for any planetary injec-
tion at any position within the annulus (see the peak on the blue
curves of Fig. 7). The underlying motivation behind the iden-
tification of k is that MLAR sequences and their S/N curves
can then be defined around this principal component, thus max-
imizing the gap between planetary and noise signals in the
training set.

To identify k at a given angular separation and for a pre-
defined S/N interval of injections, the PCA-pmap relies on two
steps: (i) through the data-driven procedure of Appendix B, it
pre-estimates the injection flux range that corresponds to the
selected S/N range; (ii) once this flux range is estimated, it is
used to randomly select fluxes within the range to inject many
fake companions, within the annulus at random coordinates, and
retrieve their S/N curves (e.g. Fig. 7). The k can finally be esti-
mated by averaging all these S/N curves. Here, we select the
injected companion fluxes to produce an S/N ranging between
1 and 3 in the final PCA-processed map obtained with one sin-
gle principal component, which was experimentally found to be
appropriate for the NA-SODINN training as it generally pro-
duces companions close to the detection limit for a larger number
of PCs. We indicate the k obtained for this S/N range as white
circles in Figs. 4a and 5a. By comparing k with the principal
components where the 90% CEVR is reached in PCA-pmaps for
both sph2 and nrc3 ADI sequences (Figs. 4a and 5a), we observe
that at some angular separations, k is not well captured by the
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CEVR metric. This suggests that the use of CEVR as a figure of
merit for choosing the principal components is not always opti-
mal. Therefore, while more training data is generally beneficial,
the range of PCs around the value of k can be chosen differently
each time NA-SODINN is employed. A range between 15 and 30
PCs is generally optimal.

3.2.3. Training and inference

NA-SODINN trains an independent detection model for each
regime by using its corresponding training set. For each MLAR
sequence in the training set, the feature maps created through
convolutional blocks are now concatenated with their respective
S/N curves after the flattened layer (Fig. 8). NA-SODINN gen-
erally reaches a ~99.9% validation accuracy with 5-8 epochs.
In the last step, NA-SODINN makes inferences for each indi-
vidual noise regime. It applies the trained model of each regime
to infer its corresponding confidence map of the same regime
(Fig. 8). Finally, NA-SODINN builds the final confidence detec-
tion map by joining all confidence regime maps inferred with
each detection model. Thus, our NA-SODINN algorithm is
conceived to keep the main characteristics of the pioneering
SODINN algorithm (Gomez Gonzalez et al. 2018), such as its
architecture, and adapt its optimization process to our local noise
approach.

4. Model evaluation

Now that NA-SODINN has been introduced, we aim to thor-
oughly evaluate its detection ability. In the first part of this
section, we explain the evaluation strategy and benchmark NA-
SODINN with respect to its predecessor SODINN using the
same sph2 and nrc3 ADI sequences. Then, in the second part, we
apply NA-SODINN to the first phase of the EIDC (Cantalloube
et al. 2020), providing confidence maps for each ADI sequence
in the data challenge and running the same statistical analysis to
compare the NA-SODINN performance with the rest of the HCI
algorithms.

4.1. Performance assessment

The evaluation of HCI detection algorithms consists of mini-
mizing the false positive rate (FPR) while maximizing the true
positive rate (TPR) at different detection thresholds applied in
the final detection map. This information is summarized by
a curve in the receiver operating characteristics (ROC) space,
where each point in the curve captures both metrics at a given
threshold value (Gomez Gonzalez et al. 2018; Dahlqvist et al.
2020). In order to produce ROC curves for various versions of
SODINN applied to a given ADI sequence D, we first build
the evaluation set D,,,; = {D1, D>, D3, ..., D} containing s syn-
thetic datasets D;, where each synthetic dataset is a copy of D
with one fake companion injection per noise regime. Here, we
limit the number of injected companions per noise regime to one
at a time to avoid any risk of cross-talk between companions
in the detection algorithms themselves (e.g. because multiple
companions can affect the PCA), or in their evaluation (e.g. if
they get too close and merge in terms of confidence patch). The
coordinates of these injections are randomly selected within the
considered noise regime boundaries, and their fluxes are ran-
domly set within a pre-defined range of fluxes that correspond
to an S/N range between 0.5 and 2 in the processed frame.
This pre-defined range of fluxes is estimated through the same
data-driven strategy explained in Appendix B and illustrated in

Fig. B.1. Hence, each algorithm provides s final detection maps,
from which true positives (TPs), false positives (FPs), true neg-
atives (TNs) and false negatives (FNs) indicators are computed
across the whole noise regime field of view at different detec-
tion thresholds. Then, all these indicators are averaged, and the
corresponding ROC curve for the considered noise regime is
produced. Instead of using the FPR metric as in standard ROC
curves, here we used the mean number FPs within the whole
field of view, which is more representative of the HCI detec-
tion task and facilitates the interpretation of our performance
simulations.

We perform the proposed ROC curve analysis on both sph2
and nrc3 ADI sequences, with s = 100 for each. For this assess-
ment, a detection is defined as a blob in the final detection map
with at least one pixel above the threshold inside a circular aper-
ture of diameter equal to the FWHM centred at the position of
each injection. With the aim of benchmarking NA-SODINN,
we include in this evaluation the annular-PCA algorithm (Absil
et al. 2013) as implemented in the VIP Python package (Gomez
Gonzalez et al. 2017; Christiaens et al. 2023), the SODINN
framework by Gomez Gonzalez et al. (2018), and two hybrid
detection models. These hybrid models are modifications of
SODINN to include only one of the two additional features intro-
duced in NA-SODINN: the adaptation to noise regimes, or the
addition of S/N curves in the training. Hereafter, we refer to them
respectively as SODINN+Split and SODINN+S/N. In the same
spirit as an ablation study, these two hybrid models are included
in our evaluation in order to provide information about the added
value of each approach separately for the task of detection. It
is worth mentioning that instead of retraining all considered
SODINN-based models every time a different fake companion
is injected into each evaluation set, we train them once per ADI
sequence. While retraining would be more accurate, as the pres-
ence of an injected fake companion could slightly perturb the
c_ class, we assume that our augmentation strategy (Sect. 3.1.1)
mitigates this perturbation and does not significantly impact the
training process and the model’s performance. Moreover, using
the same model to detect all fake companion injections in a
single ADI sequence saves computation time.

An important aspect to consider when comparing algorithms
in ROC space is to optimally choose their model parameters. In
the case of annular-PCA, we use one, five, and ten principal
components for each annulus as a good compromise to anal-
yse its performance. For the various versions of SODINN, we
need to define two main parameters: the list of principal com-
ponents PC = (pc,, pc,, ..., pc,,) that are used to produce each
sample in both the MLAR sequence and S/N curve, and the
level of injected fluxes used for making c, class samples (see
Sect. 3.1). For SODINN, we used the criterion based on the
CEVR, as proposed by Gomez Gonzalez et al. (2018), to define
the PC list. For NA-SODINN and the hybrid models, we instead
rely on the novel PCA-pmaps technique, and we choose a list
of m = 15 principal components centred around k (Sect. 3.2.2).
Regarding the injected fake companion fluxes, we choose for all
SODINN-based models a range of fluxes that correspond to an
S/N between one and three in the PCA-processed frame with one
principal component (Appendix B). This range of fluxes does not
generally lead to class overlapping, where ¢, and c_ class sam-
ples would look too similar. However, in order to avoid FPs in
the final detection map, the user may consider higher flux ranges.
Finally, to build the ROC curve, we consider a list of S/N thresh-
olds ranging from 0.1 to 4.5 in steps of 0.5 for annular PCA,
while for the SODINN-based models, we use a list of confidence
thresholds from 0.09 to 0.99 in steps of 0.1. All SODINN-based
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Fig. 9. ROC analysis per noise regime for the sph2 dataset showing
the performance of SODINN, NA-SODINN, annular-PCA, and hybrid
SODINN models. The values plotted alongside each curve highlight
some of the selected thresholds.
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Fig. 10. Same as Fig. 9, but for the nrc3 dataset.

models are trained on balanced training sets containing around
10° samples for each class using an NVIDIA GeForce RTX 3070
graphics processing unit (GPU).

Figures 9 and 10 display a series of ROC spaces — one for
each detected noise regime —, respectively for the sph2 and nrc3
ADI sequences. For the sake of simplicity, we do not consider
the detected regime comprised between 17 and 19 A/D in sph2
(Fig. 4) for this analysis. Each of these ROC spaces displays one
ROC curve per algorithm, which informs about its detection per-
formance on that specific noise regime for different thresholds.
We observe from both figures that NA-SODINN outperforms
its predecessor, the hybrid models, and the annular-PCA tech-
nique for each noise regime. This behaviour is further illustrated
in Appendix C, with Figs. C.1, C.2 and C.3 for the case of
sph2, and Figs. C.4, C.5 for nrc3, where the confidence maps
from each algorithm are compared at different threshold levels.
Regarding hybrid models, we generally observe that they land
between the SODINN and NA-SODINN detection performance,
with SODINN+S/N generally being the best hybrid model. It can
also be observed that annular-PCA with PC=5 and PC=10 per-
form better than with PC=1 for all regimes. We associate this
behaviour to the fact that for PC=5 and PC=10, we are closer
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Fig. 11. NA-SODINN confidence maps obtained on the whole set of EIDC ADI sequences (Table A.1). For the submitted confidence threshold
7 = 0.90, we highlight with green circles the correct detection of injected companions (true positives), and with red circles the non-detection of
injected companions (false negatives). The circles have a FWHM diameter. No false positive is reported in our maps, as all the remaining non-

circled peaks in the confidence maps are below the threshold.

to the principal component & where the S/N is maximized, and
therefore, the star-planet contrast is improved.

Based on these results and our experiments, we observe a
general trend for both approaches separately. While splitting
the field of view in noise regimes tends to reduce the num-
ber of false positives, especially when residual speckle noise
is significant, adding an S/N curve for each MLAR sequence
tends to enhance the algorithm’s sensitivity to detect signals.
These findings imply that both techniques, when combined in
the neural network, considerably improve the SODINN detection
performance.

4.2. NA-SODINN in EIDC

By design, the Exoplanet Imaging Data Challenge (EIDC,
Cantalloube et al. 2020) can be used as a laboratory to compare
and evaluate new detection algorithms against other state-of-
the-art HCI detection algorithms. For instance, Dahlqvist et al.
(2021a) used the EIDC to highlight the improvement of the
automated version of their RSM algorithm. Here, we use the
first sub-challenge of the EIDC to generalize the ROC analy-
sis presented above, and evaluate how NA-SODINN performs
with respect to the state-of-the-art HCI algorithms that entered
the data challenge. Besides the sph2 and nrc3 datasets used so

A86, page 13 of 24



Cantero, C., et al.:

far, the first EIDC sub-challenge includes seven additional ADI
sequences in which a total of 20 planetary signals with different
contrasts and position coordinates were injected. Two of these
seven ADI sequences are from the SPHERE instrument (Beuzit
et al. 2019), identified as sphl and sph3, two more from the
NIRC-2 instrument (Serabyn et al. 2017), identified as nrcl and
nrc3, and the remaining three from the LMIRCam instrument
(Skrutskie et al. 2010), with Imrl, Imr2 and Imr3 ID names. For
each of these nine datasets, EIDC provides a pre-processed tem-
poral cube of images, the parallactic angles variation corrected
from true north, a non-coronagraphic PSF of the instrument, and
the pixel-scale of the detector. Each algorithm entering the EIDC
had to provide a detection map for each ADI sequence. The fol-
lowing standard metrics are then used to assess the detection
performance of each submitted detection map:

. . _ _FP
— False Positive Rate: FPR = 7,

— False Discovery Rate: FDR = £

te: 1 FPATP®
— Fl-score: F1 = 3TP+FPrFN"

We apply our NA-SODINN framework to the EIDC, and as
in the ROC analysis, we use PCA-pmaps as a tool for both esti-
mating residual noise regimes and choosing the list of principal
components PC at each angular separation. For the injection flux
ranges, we use an S/N range between one and four times the level
of noise in the processed frame. Each model is trained with bal-
anced training sets that contain around 10° samples per class.
Because all three LMIRCam cubes contain more than 3,000
frames (Table A.1), we decided to reduce this number to around
250-300 frames to limit the computational time. To do that, we
average a certain number of consecutive frames along the time
axis in the sequence. Figure 11 shows a grid of all the result-
ing NA-SODINN confidence maps for the EIDC ADI sequences
where we observe, by visual inspection, that NA-SODINN finds
most of the injected fake companions, while producing only faint
false positives that all fall below our default detection threshold
7 = 0.9. In order to quantify this information, we follow the same
approach as in Cantalloube et al. (2020) by considering the area
under the curve (AUC) for the TPR, FPR, and FDR as a func-
tion of the threshold, which allows mitigating the arbitrariness of
the threshold selection by considering their evolution for a pre-
defined range. The AUCtpg should be as close as possible to one,
and the AUCppr and AUCppg as close as possible to zero. The
F1-score ranges between zero and one, where one corresponds to
a perfect algorithm, and is computed only on a single threshold
Tsub that is chosen by the participant.

Figure D.1 shows the result of this analysis for all NA-
SODINN confidence maps of Fig. 11, in which all TPR, FPR,
and FDR metrics (and their respective AUCs) are computed
for different confidence threshold values ranging from zero to
one. Here, we mainly see that the AUCgpR is generally higher
along the range of thresholds for NIRC-2 and LMIRCam than for
SPHERE datasets, the AUCgpr is close to zero for all datasets,
and the AUCrpy is almost perfect for SPHERE datasets. To com-
pute the Fl-score, we choose a 74, = 0.9 confidence threshold.
From our test with NA-SODINN, we consider this value as the
minimum confidence threshold for which one can rely on the
significance of detections, maximizing TPs while minimizing
FPs. Thus, any pixel signal above this 7, on each confidence
map of Fig. 11 is considered as a detection for the computation
of the F1-score. Finally, through the AUCtpr, AUCppr and F1-
score metrics obtained with the NA-SODINN algorithm, we are
able to update the general EIDC leaderboard (Cantalloube et al.
2020). Figure 12 shows how NA-SODINN ranks compared to the
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Fig. 12. Updated EIDC leaderboard after the NA-SODINN submision.
Ranking based on the F'1-score (on top), the AUC of the TPR (in the
middle) and the AUC of the FDR (on bottom). Colours refer to HCI
detection algorithm families: PSF-based subtraction techniques provid-
ing residual maps (red) or detection maps (orange), inverse problems
(blue) and supervised machine learning (green). The light, medium
and dark tonalities correspond to SPHERE, NIRC-2, and LMIRCam
datasets, respectively.
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algorithms originally submitted to the EIDC, for each considered
metric. We clearly observe that NA-SODINN ranks at the top, or
close to the top, for each of the EIDC metrics, with results gen-
erally on par with the RSM algorithm by Dahlqvist et al. (2020).
In particular, NA-SODINN provides the highest area under the
true positive curve, while preserving a low false discovery rate.

5. Conclusions

In this paper, we explore the possibility of enhancing exoplanet
detection in the field of HCI by training a supervised classi-
fication model that takes into account the noise structure in
the PCA-processed frame. SODINN (Gomez Gonzalez et al.
2018), a pioneering deep-learning detection algorithm in HCI,
has been adapted to learn from different noise regimes in the pro-
cessed frame and local discriminators between the exoplanet and
noise, such as S/N curves. With these two approaches working
in synergy, we built a new detection algorithm, NA-SODINN.
Although our findings related to the spatial structure of noise
distributions are showcased by adapting the SODINN detec-
tion framework, we believe that other algorithms dealing with
processed frames could be adapted similarly.

The NA-SODINN detection capabilities were tested through
two distinct analyses. First, we performed a performance assess-
ment based on ROC curves using two ADI sequences provided
by the VLT/SPHERE and Keck/NIRC-2 instruments. Here, NA-
SODINN is evaluated with respect to annular-PCA, the original
SODINN, and two SODINN-based hybrid models that use only
one of the two proposed approaches, that is, the noise regime
splitting or the S/N curves’ addition. We found that hybrid
models improve the detection performance of SODINN in all
noise regimes, which demonstrates the interest of the local noise
approaches considered in this paper. Moreover, we found that
NA-SODINN reaches an even higher detection performance,
especially in the speckle noise regime, by combining both
approaches in the same framework. Then, in order to benchmark
NA-SODINN against other state-of-the-art HCI algorithms, we
applied NA-SODINN to the first phase of EIDC (Cantalloube
et al. 2020), a community-wide effort meant to offer a platform
for a fair and common comparison of exoplanetary detection
algorithms. In this analysis, we observed that NA-SODINN is
ranked at the top (first or second position) of the challenge
leaderboard for all considered evaluation metrics, providing in
particular the highest true positive rate among all entries, while
still keeping a low false discovery rate.

We identified some limitations that could be addressed in
future work to improve the effectiveness and practicality of our
NA-SODINN method. While the algorithm currently performs
well in noise regimes over PCA-processed frames, it relies on
previous noise analyses to define these regime boundaries, limit-
ing its independence. Future avenues would include modifying
the network architecture to enable the identification of noise
regimes during training, which could enhance the detection per-
formance. Another limitation of our approach is the challenge of
setting an appropriate detection threshold in the final detection
map. This is typically based on the presence of obvious false
positives, which may affect the application of NA-SODINN in
certain contexts. However, this limitation can be mitigated by
using dedicated metrics such as ROC space to assess detection
performance. We also note that NA-SODINN and its predeces-
sor rely on data augmentation techniques to generate a diverse
training set. To supplement these techniques, we suggest explor-
ing generative neural networks to train more robust supervised

models that can generalize better. Lastly, extending the applica-
tion of NA-SODINN to work on other observing strategies and
detect extended sources such as protoplanetary disks would be a
valuable avenue to increase the flexibility of the algorithm.

The NA-SODINN framework represents a significant step
forward in the search for new and unconfirmed worlds in indi-
vidual datasets and large surveys using ADI-based techniques.
This framework offers greater accuracy in identifying exoplanets
across all angular separations, making it particularly well suited
for improving our understanding of the demographics of directly
imaged exoplanets.
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Appendix A:EIDC datasets

Table A.1: Features of the nine ADI sequences from EIDC: The
number of frames in the sequence (;), the frame size (Nin,), the
wavelength (4,,5), and the field rotation (A,,;).

ID Telescope/Inst. FWHM N, Nimg Aobs Ao Inj.
[px] [pxXpx] [pm] [°]
sphl  VLT/SPHERE 4 252 160x160 1.625+0.29 403 1
sph2  VLT/SPHERE 4 80 160x160 1.593+£0.052 315 O
sph3  VLT/SPHERE 4 228 160x160 1.593 £0.052 80.5 5
nrcl  Keck/NIRC-2 9 29 321x321 3.776 £0.70 530 3
nrc2  Keck/NIRC-2 9 40 321x321 3.776 £0.70 373 4
nrc3  Keck/NIRC-2 9 50 321x321 3.776 £0.70 166.9 0
Imrl LBT/LMIRCAM 5 4838 200x200 3.780+0.10 1534 2
Imr2 LBT/LMIRCAM 4 3219 200x200 3.780+0.10 60.6 2
Imr3 LBT/LMIRCAM 4 4620 200x200 3.780+0.10 910 3

Appendix B: Injection fluxes estimation

In HCI, a planetary injection is defined as the process of past-
ing the AO-corrected instrumental PSF (centred, cropped, and
normalized) to every frame in the image sequence at specific
coordinates (r, 6) following field rotation. To control the flux of
this injection, the standard procedure is to multiply the normal-
ized PSF by a flux scale factor @. Estimating an injection flux
range that corresponds to a given S/N range in the post-processed
frame implies estimating its respective flux scale factor range
ar = [@mins ¥max]- Given a desired S/N range and an angular
separation, @, and @, are estimated through the following
data-driven procedure:

1. inject a companion in the raw image sequence at random
coordinates (r, §) within the annuli and with a random scale
factor «;

2. compute the ADI-PCA processed frame for this synthetic
image sequence using one single principal component in the
PCA approximation of the speckle field;

3. apply Eq. 2 on the processed frame at the injection coordi-

nates (r, 0), retrieving the companion S/N value;

. repeat 1-3 steps Nj,; times;
. plot all S/N values retrieved from all N;,; injections of step 4
as a function of their corresponding scale factor;

6. linearly fit the data plotted in step 5, and define «,,;, and
e as the intersection between the linear fit and the
corresponding S/N range boundaries.

This process is repeated for each angular separation in the
field of view in such a way that a different flux scale factor
range ay is estimated for each annulus. Figure B.1 illustrates this
data-driven procedure for the case of the sph2 dataset, showing
the plots of step 5 for different annuli, each with Nj,; = 3000
injections (step 4). From Fig. B.1, we observe a general trend:
the estimated scale factor range decreases as the angular dis-
tance increases. This observation aligns with our expectations,
given that the spatial component of speckle noise intensity dis-
plays a radial dependency in the raw HCI data, a characteristic
that persists even after the ADI processing. However, for this
sph2 dataset, a notable departure from this trend occurs between
15 — 164/ D separations. In this specific interval, we observe in
Fig. B.1 an anomalous increase in the estimated scale factors
instead. We associate this behaviour with the fact that, at these
angular separations for sph2, speckle dominates over background
noise, as concluded in Sect. 2.
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Fig. B.1: Example of the injection flux estimation method for the case of the sph2 sequence. Each subplot refers to a different angular separation,
and shows the S/N of an injection (y axis), retrieved from the PCA post-processed frame with one principal component, as a function of its scale
factor (x axis). Each point in cyan on subplots thus represents a fake companion, which has been injected in the ADI sequence at random coordinates
within the corresponding annulus and with a random scale factor. The thin red line is the curve fit of all injections, and dashed horizontal curves
in black delimit the chosen S/N range, which is from one to three in this case. The two red dots show the intersection between the curve fit and the
S/N limits (step 6), which therefore define the range of the scale factor corresponding to the chosen S/N limits.
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Appendix C:Detection maps for sph2 and nrc3
datasets

/Annular-PCA (pc=1)
S/N map

Annular-PCA (pc=5)
S/N map

SODINN+Split
Confidence map

SODINN+S/N
Confidence map

ADec ["]

NA-SODINN

L oo

0.5 0.0 -0.5

Fig. C.1: Evaluation example of Annular-PCA and all SODINN-based algorithms over the 5-7 1/D regime of sph2, where a fake companion has
been injected with S/N=0.75 (computed in the PCA-processed frame using the first principal component). Each row corresponds to a different
algorithm, where its detection map is on left column, and its three thresholds (binary maps) are on the right. The threshold 7, TPs and FPs are
highlighted over each binary map. White concentric circles indicate the regime’s boundaries. Other noise regimes are masked. Small green circles
indicate the position of the injection.
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Fig. C.2: Same of Fig. C.1 for the regime 8-14 A/D on sph2, where a fake companion has been injected with S/N=0.89.

A86, page 20 of 24



ADec ["]

ADec ["]

ADec ["]

ADec ["]

ADec ["]

ADec ["]

Cantero, C., et al.: A&A, 680, A86 (2023)

Fig. C.3: Same of Fig. C.1 for the regime 15-16 A/D on sph2, where a fake companion has been injected with S/N=0.78.
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Fig. C.4: Same of Fig. C.1 for the regime 1-3 1/D on nre3, where a fake companion has been injected with S/N=0.78.
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Fig. C.5: Same of Fig. C.1, but for the regime 4-16 1/D on nrc3, where a fake companion has been injected with S/N=0.84.
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Appendix D: Details of the EIDC metrics for
NA-SODINN
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Fig. D.1: TPR, FDR, and FPR metrics computed from the confidence maps of Fig. 11 for a range of confidence thresholds varying from zero to one.
Their respective AUCs are shown in each legend. The F1-score is computed at the submitted threshold on the challenge 7, = 0.9 (vertical dashed
line) and it is shown in the top of each subplot. When the dataset contains injections, TPR and FDR steply decrease with threshold, while FPR
decreases monotonically. Thereby, an ideal algorithm would provide a TPR=1, FPR=0 and FDR=0 for any threshold and therefore, an AUC7pg = 1,
AUCrppg = 0 and AUCppr = 0. However, when the dataset does not have injections, the FPR is the only metric that can be defined as it does not
depend on TPs.
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