[en] Unmanned aerial systems (UASs) represent an important tool to characterize vegetation patterns and processes. Their ultrahigh resolution and flexibility may help to bridge the gap between field and satellite remote sensing data. UASs can address a variety of fields, ranging from biodiversity mapping and monitoring through the assessment of ecosystem structure, plant phenology, and plant stress up to the dynamic processes of natural disturbances and insect outbreaks. There are a variety of sensors, platforms, and procedures available to collect and process UAS data. Therefore it is necessary to optimize survey workflows in a direction to capitalize on the great advantages of technology, ultrahigh spatial and potentially also temporal resolution. Here, an overview of the methods applied in ecosystem studies are provided to better illustrate different workflows for monitoring vegetation state, structure, status, and dynamics and introduce challenges and future perspectives.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Müllerová, Jana; Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic ; Jan Evangelista Purkyně University, Ústí n. L., Czech Republic
Bartaloš, Tomáš; Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic ; Gisat s.r.o, Prague, Czech Republic
Gago, Xurxo; Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institute of Agro-Environmental and Water Economy Research, INAGEA, Palma, Spain
Kent, Rafi; Independent Researcher, Bahan, Israel
Michez, Adrien ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Mokroš, Martin; Technical University in Zvolen, Zvolen, Slovakia ; Czech University of Life Sciences Prague, Prague, Czech Republic
Mücher, Sander; Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
Paulus, Gernot; Spatial Information Management, Carinthia University of Applied Sciences, Villach, Austria
Language :
English
Title :
Vegetation mapping and monitoring by unmanned aerial systems (UAS)—current state and perspectives
Publication date :
2023
Main work title :
Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments
Abdollahnejad, A. & Panagiotidis, D. (2020). Tree species classification and health status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging. Remote. Sens., 12(22), 1–21
Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R. et al. (2017). Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote. Sens., 9(11), 1110
Alvarez-Vanhard, E., Houet, T., Mony, C., Lecoq, L. & Corpetti, T. (2020). Can UAVs fill the gap between in situ surveys and satellites for habitat mapping? Remote. Sens. Environ. 243, 111780
Bagaram, M., Giuliarelli, D., Chirici, G., Giannetti, F. & Barbati, A. (2018). UAV remote sensing for biodiversity monitoring: are forest canopy gaps good covariates?. Remote. Sens., 10(9), 1397
Bankert, A.R., Strasser, E.H., Burch, C.G. & Correll, M.D. (2021). An open-source approach to characterizing Chihuahuan Desert vegetation communities using object-based image analysis. J. Arid. Environ., 188, 104383
Bartaloš, Tomáš, Brůna, Josef, Dvořák, Petr, Müllerová, Jana, 2022. Object-based image analysis for monitoring plant invasions, can we use an open-source solution? [dataset]. Zenodo. doi:10.5281/zenodo.7290189
Belgiu, M. & Drăguţ, L. (2016). Random forest in remote sensing: a review of applications and future directions. ISPRS J. photogrammetry Remote. Sens., 114, 24–31
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E. et al. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS J. photogrammetry Remote. Sens., 87, 180–191
Bunce, R.G. H., Bogers, M.M. B., Evans, D., Halada, L., Jongman, R.H. G., Mucher, C.A., et al. (2013). The significance of habitats as indicators of biodiversity and their links to species. Ecol. Indicators, Spec. Issue: Biodivers. Monit., 33 (2013) 19–25
Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X. & Ruan, H. (2019). Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests. 10(2):145. https://doi.org/10.3390/f10020145
Cardil, A., Otsu, K., Pla, M., Silva, C.A. & Brotons, L. (2019). Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery. PLoS One, 14(3), e0213027
Carl, C., Lehmann, J.R., Landgraf, D. & Pretzsch, H. (2019). Robinia pseudoacacia L. in short rotation coppice: seed and stump shoot reproduction as well as UAS-based spreading analysis. Forests, 10(3), 235
Chabot, D., Dillon, C., Shemrock, A., Weissflog, N. & Sager, E.P. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS Int. J. Geo-Information, 7(8), 294
Cunliffe, A.M., Brazier, R.E. & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired Structure-from-Motion photogrammetry. Remote. Sens. Environ., 183, 129–143
D’Odorico, P., Gonsamo, A., Gough, C.M., Bohrer, G., Morison, J., Wilkinson, M., et al. (2015). The match and mismatch between photosynthesis and land surface phenology of deciduous forests. Agric. For. Meteorol. 214–215: 25–38
D'Odorico, P., Besik, A., Wong, C.Y., Isabel, N. & Ensminger, I. (2020). High-throughput drone-based remote sensing reliably tracks phenology in thousands of conifer seedlings. N. Phytologist, 226(6), 1667–1681
De Giglio, M., Greggio, N., Goffo, F., Merloni, N., Dubbini, M. & Barbarella, M. (2019). Comparison of pixel-and object-based classification methods of unmanned aerial vehicle data applied to coastal dune vegetation communities: Casal Borsetti case study. Remote. Sens., 11(12), 1416
De Luca, G., Silva, J.M. N., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., et al. (2019). Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo ToolBox. Remote. Sens., 11(10), 1238
de Sá, N.C., Castro, P., Carvalho, S., Marchante, E., López-Núñez, F.A. & Marchante, H. (2018). Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front. Plant. Sci. 9:1–13
Durgan, S.D., Zhang, C., Duecaster, A., Fourney, F. & Su, H. (2020). Unmanned aircraft system photogrammetry for mapping diverse vegetation species in a heterogeneous coastal wetland. Wetlands, 40(6), 2621–2633
Estrany, J., Ruiz, M., Calsamiglia, A., Carriquí, M., García-Comendador, J., Nadal, M. et al. (2019). Sediment connectivity linked to vegetation using UASs: high-resolution imagery for ecosystem management. Sci. Total. Environ., 671, 1192–1205
Fawcett, D., Bennie, J. & Anderson, K. (2020). Monitoring spring phenology of individual tree crowns using drone-acquired NDVI data. Remote. Sens. Ecol. Conserv
Fernández-Guisuraga, J.M., Sanz-Ablanedo, E., Suárez-Seoane, S. & Calvo, L. (2018). Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: opportunities and challenges. Sensors, 18(2), 586
Ficetola, G.F., Bonardi, A., Mücher, C.A., Gilissen, N.L. & Padoa-Schioppa, E. (2014). How many predictors in species distribution models at the landscape scale? Land use versus LiDAR-derived canopy height. Int. J. Geographical Inf. Sci., 28(8), 1723–1739
Franklin, S.E. (2018). Pixel-and object-based multispectral classification of forest tree species from small unmanned aerial vehicles. J. Unmanned Veh. Syst., 6(4), 195–211
Gamon, J.A., Peñuelas, J. & Field, C.B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 41(1), 35–44
Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., … Medrano, H., 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural water management 153, 9–19
Gamon, J.A., Huemmrich, K.F., Wong, C.Y. S., Ensminger, I., Garrity, S., Hollinger, D.Y., et al. (2016). A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sciences, USA 113: 13087–13092
Getzin, S., Wiegand, K. & Schöning, I. (2012). Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. evolution, 3(2), 397–404
Gini, R., Passoni, D., Pinto, L. & Sona, G. (2014). Use of unmanned aerial systems for multispectral survey and tree classification: a test in a park area of northern Italy. Eur. J. Remote. Sens., 47(1), 251–269
Glendell, M., McShane, G., Farrow, L., James, M.R., Quinton, J., Anderson, K. et al. (2017). Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Process. Landf., 42(12), 1860–1871
Gonçalves, J., Henriques, R., Alves, P., Sousa-Silva, R., Monteiro, A.T., Lomba, et al. (2016). Evaluating an unmanned aerial vehicle-based approach for assessing habitat extent and condition in fine-scale early successional mountain mosaics. Appl. Vegetation Sci., 19(1), 132–146
Gonçalves, J., Pôças, I., Marcos, B., Mücher, C.A. & Honrado, J.P. (2019). SegOptim—a new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data. Int. J. Appl. Earth Observation Geoinf., 76, 218–230
Hamylton, S.M., Morris, R.H., Carvalho, R.C., Roder, N., Barlow, P., Mills, K. et al. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Observation Geoinf., 89, 102085
Hao, M., Zhao, W., Qin, L., Mao, P., Qiu, X., Xu, L. et al. (2021). A methodology to determine the optimal quadrat size for desert vegetation surveying based on unmanned aerial vehicle (UAV) RGB photography. Int. J. Remote. Sens., 42(1), 84–105
Hernández-Clemente, R., Navarro-Cerrillo, R.M. & Zarco-Tejada, P.J. (2012). Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote. Sens. Environ. 127, 298–315
Hervouet, A., Dunford, R., Piégay, H., Belletti, B. & Trémélo, M.L. (2011). Analysis of post-flood recruitment patterns in braided-channel rivers at multiple scales based on an image series collected by unmanned aerial vehicles, ultra-light aerial vehicles, and satellites. GIScience & Remote. Sens., 48(1), 50–73
Higgisson, W., Cobb, A., Tschierschke, A. & Dyer, F. (2021). Estimating the cover of Phragmites australis using unmanned aerial vehicles and neural networks in a semi-arid wetland. River Res. Appl
Husson, E., Ecke, F. & Reese, H. (2016). Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote. Sens., 8, 724
Jones, H.G. & Vaughan, R.A. (2010). Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press
Jurjević, L., Gašparović, M., Liang, X. & Balenović, I. (2021). Assessment of close-range remote sensing methods for DTM estimation in a lowland deciduous forest. Remote. Sens. 13(11):2063
Kainbacher, J., 2020. UAS-basierte quantitative Analysen von forstlichen Parametern am Beispiel der Kunstintervention, FOR FOREST Unpublished Bachelor Thesis, Department of Geoinformation and Environmental Technologies, Carinthia University of Applied Sciences, Villach, Austria
Kattenborn, T., Eichel, J. & Fassnacht, F.E. (2019). Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep., 9(1), 1–9
Kattenborn, T., Leitloff, J., Schiefer, F. & Hinz, S. (2021). Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J. Photogrammetry Remote. Sens., 173, 24–49
Kent, R., Lindsell, J.A., Laurin, G.V., Valentini, R. & Coomes, D.A. (2015). Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote. Sens., 7(7), 8348–8367
Kwong, I.H. & Fung, T. (2020). Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest. Int. J. Remote. Sens., 41(14), 5228–5256
Laliberte, A.S. & Rango, A. (2011). Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote. Sens., 48(1), 4–23
Lam, O.H. Y., Dogotari, M., Prüm, M., Vithlani, H.N., Roers, C., Melville, B. et al. (2021). An open source workflow for weed mapping in native grassland using unmanned aerial vehicle: using Rumex obtusifolius as a case study. Eur. J. Remote. Sens., 54(sup1), 71–88
Lambers, H., Chapin, F. S., Pons, T. L., 2008. In: Plant physiological ecology, (Vol. 2,. Springer, New York, pp. 11–99
Larrinaga, A.R. & Brotons, L. (2019). Greenness indices from a low-cost UAV imagery as tools for monitoring post-fire forest recovery. Drones, 3(1), 6
Lehmann, J.R. K., Nieberding, F., Prinz, T. & Knoth, C. (2015). Analysis of unmanned aerial system-based CIR images in forestry—a new perspective to monitor pest infestation levels. Forests, 6(3), 594–612
Lehmann, J.R., Prinz, T., Ziller, S.R., Thiele, J., Heringer, G., Meira-Neto, J.A. et al. (2017). Open-source processing and analysis of aerial imagery acquired with a low-cost unmanned aerial system to support invasive plant management. Front. Environ. Sci., 5, 44
Lelli, C., Bruun, H.H., Chiarucci, A., Donati, D., Frascaroli, F., Fritz, Ö. et al. (2019). Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manag., 432, 707–717
Lin, Q., Huang, H., Wang, J., Huang, K. & Liu, Y. (2019). Detection of Pine Shoot Beetle (PSB) stress on pine forests at individual tree level using UAV-based hyperspectral imagery and Lidar. Remote. Sens. 11, 2540
Lisein, J., Pierrot-Deseilligny, M., Bonnet, S. & Lejeune, P. (2013). A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests, 4(4), 922–944
Lisein, J., Michez, A., Claessens, H. & Lejeune, P. (2015). Discrimination of deciduous tree species from time series of unmanned aerial system imagery. PLoS ONE 10 (11), e0141006
Liu, T. & Abd-Elrahman, A. (2018). Deep convolutional neural network training enrichment using multi-view object-based analysis of unmanned aerial systems imagery for wetlands classification. ISPRS J. Photogrammetry Remote. Sens., 139, 154–170
Lorah, P., Ready, A. & Rinn, E. (2018). Using drones to generate new data for conservation insights. Int. J. Geospatial Environ. Res., 5(2), 2
Lu, B. & He, Y. (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogrammetry Remote. Sens. 128:73–85
Martin, F.M., Müllerová, J., Borgniet, L., Dommanget, F., Breton, V. & Evette, A. (2018). Using single-and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Remote. Sens., 10(10), 1662
Mattivi, P., Pappalardo, S.E., Nikolić, N., Mandolesi, L., Persichetti, A., De Marchi, M. et al. (2021). Can commercial low-cost drones and open-source GIS technologies be suitable for semi-automatic weed mapping for smart farming? A case study in NE Italy. Remote. Sens., 13(10), 1869
Mayr, M.J., Malß, S., Ofner, E. & Samimi, C. (2018). Disturbance feedbacks on the height of woody vegetation in a savannah: a multi-plot assessment using an unmanned aerial vehicle (UAV). Int. J. Remote. Sens., 39(14), 4761–4785
McKenna, P., Erskine, P.D., Lechner, A.M. & Phinn, S. (2017). Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. Int. J. Remote. Sens., 38(14), 4244–4264
Meneses, N.C., Baier, S., Reidelstürz, P., Geist, J. & Schneider, T. (2018). Modelling heights of sparse aquatic reed (Phragmites australis) using structure from motion point clouds derived from rotary- and fixed-wing Unmanned Aerial Vehicle (UAV) data. Limnologica 72, 10–21
Michez, A., Piégay, H., Lisein, J., Claessens, H. & Lejeune, P. (2016). Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess., 188(3), 146
Mikita, T., Janata, P. & Surový, P. (2016). Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests, 7(8), 165
Minařík, R. & Langhammer, J. (2016). Use of a multispectral UAV photogrammetry for detection and tracking of forest disturbance dynamics. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Inf. Sci., 41, 711–718
Mokroš, M., Výbošťok, J., Merganič, J., Hollaus, M., Barton, I., Koreň, M., et al. (2017). Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests 8, 306
Mountrakis, G., Im, J. & Ogole, C. (2011). Support vector machines in remote sensing: a review. ISPRS J. Photogrammetry Remote. Sens., 66(3), 247–259
Mücher, C.A., Calders, K., Zisis, I.S., Reiche, J., 2017. Ecosystem Structure. Chapter 2.5 of Biodiversity Sourcebook. In: GOFC-GOLD A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing. Eds: GOFC-GOLD & GEO BON. Report version UNCBD COP-13, GOFC-GOLD Land Cover Project Office, Wageningen University, The Netherlands. ISSN: 2542–6729
Mücher, C.A., de Jong, J., Kramer, H., Reitsma, J.M., Los, S., 2020. Pilot innovatieve inwinning zeegras Oosterschelde. Bureau Waardenburg Rapportnr. 20–323. Bureau Waardenburg, Culemborg i.s.m. WENR, Wageningen. In opdracht van RWS-CIV Delft
Müllerová, J. (2019). UAS for nature conservation–monitoring invasive species. In: J.B. Sharma (ed), Applications of Small Unmanned Aircraft Systems: Best Practices and Case Studies, CRC Press, pp. 157–178; ISBN 9780367199241
Müllerová, J., Bartaloš, T., Brůna, J., Dvořák, P. & Vítková, M. (2017a). Unmanned aircraft in nature conservation: an example from plant invasions. Int. J. Remote. Sens. 38:2177–2198
Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M. & Pyšek, P. (2017b). Timing is important: unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front. Plant. Sci. 8:1–13
Müllerová, J., Gago, X., Bučas, M., Company, J., Estrany, J., Fortesa, J., et al. (2021). Characterizing vegetation complexity with unmanned aerial systems (UAS) – a framework and synthesis. Ecol. Indic. 131, 108156
Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Tanhuanpää, T. & Holopainen, M. (2015). Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote. Sens. 7(11), 15467–15493
Navarro, J.A., Algeet, N., Fernández-Landa, A., Esteban, J., Rodríguez-Noriega, P. & Guillén-Climent, M.L. (2019). Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote. Sens. 11, 77
Noss, R.F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol., 4(4), 355–364
Palace, M., Herrick, C., DelGreco, J., Finnell, D., Garnello, A.J., McCalley, C. et al. (2018). Determining subarctic peatland vegetation using an unmanned aerial system (UAS). Remote. Sens., 10(9), 1498
Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J. & Wilhelm, V.L. (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote. Sens., 50(1), 564–576
Paulus, G., Zebedin, P., Koren, G., Kainbacher, J., Scherling, U., Anders K.-H., 2020a. Geoinformation meets art in the forest at the football stadium in Klagenfurt, Austria. Poster presentation, GI_Forum Symposium, 7. – 10.7. 2020, University of Salzburg, Austria
Paulus, G., Zebedin, P., Koren, G., Kainbacher, J., Scherling, U., Anders K.-H., 2020b. Science meets art in the forest at the Wörthersee Soccer Stadium in Klagenfurt, Austria: FOR FOREST - The Unending Attraction of Nature in “DEEP SPACE 8K.” Invited talk, ARS ELECTRONICA FESTIVAL 2020 – In Kepler’s Gardens, 9. – 13.9. 2020, Linz, Austria
Prošek, J. & Šímová, P. (2019). UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 75, 151–162
Puttock, A.K., Cunliffe, A.M., Anderson, K. & Brazier, R.E. (2015). Aerial photography collected with a multirotor drone reveals impact of Eurasian beaver reintroduction on ecosystem structure. J. Unmanned Veh. Syst., 3(3), 123–130
Qian, W., Huang, Y., Liu, Q., Fan, W., Sun, Z., Dong, H. et al. (2020). UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Computers Electron. Agriculture, 174, 105519
Randlkofer, B., Obermaier, E., Hilker, M. & Meiners, T. (2010). Vegetation complexity—The influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic. Appl. Ecol., 11, 383–395
Reddy, C.S., Kurian, A., Srivastava, G., Singhal, J., Varghese, A.O., Padalia, H. et al. (2021). Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conservation. 30, 1–14
Röder, M., Latifi, H., Hill, S., Wild, J., Svoboda, M., Brůna, J., et al. (2018). Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. Int. J. Remote. Sens. 39:5288–5309
Roth, L., Hund, A. & Aasen, H. (2018). PhenoFly planning tool: flight planning for high-resolution optical remote sensing with unmanned aerial systems. Plant. Methods, 14(1), 1–21
Sankey, T., Donager, J., McVay, J. & Sankey, J.B. (2017). UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote. Sens. Environ., 195, 30–43
Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B. et al. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogrammetry Remote. Sens., 170, 205–215
Schmidt, J., Fassnacht, F.E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. et al. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. Int. J. Appl. Earth Observation Geoinf., 60, 61–71
Skidmore, A.K., Pettorelli, N., Coops, N.C., Geller, G.N., Hansen, M., Lucas, R. et al. (2015). Environmental science: agree on biodiversity metrics to track from space. Nat. N., 523(7561), 403
Smigaj, M., Gaulton, R., Suarez, J. C., Barr, S. L., 2017. Use of miniature thermal cameras for detection of physiological stress in conifers. Remote Sensing 9 (9), 957
Smigaj, M., Gaulton, R., Suárez, J.C. & Barr, S.L. (2019). Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity. For. Ecol. Manag., 433, 699–708
Stevens, J.T., Safford, H.D., Harrison, S. & Latimer, A.M. (2015). Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103(5), 1253–1263
Sun, P., Wu, Y., Xiao, J., Hui, J., Hu, J., Zhao, F. et al. (2019). Remote sensing and modeling fusion for investigating the ecosystem water-carbon coupling processes. Sci. Total. Environ., 697, 134064
Swetnam, T.L., Gillan, J.K., Sankey, T.T., McClaran, M.P., Nichols, M.H., Heilman P. et al. (2018). Considerations for achieving cross-platform point cloud data fusion across different dryland ecosystem structural states. Front. Plant. Sci. 8, 2144
Tamondong, A., Nakamura, T., Kobayashi, Y., Garcia, M. & Nadaoka, K. (2020). Investigating the effects of river discharges on submerged aquatic vegetation using UAV images and GIS techniques. ISPRS Ann. Photogrammetry, Remote. Sens. Spat. Inf. Sci., 5, 93–99
Themistocleous K., Papadavid, G., Christoforou, M., Agapiou, A., Andreou, K., Tsaltas, D. et al. (2014). Use of remote sensing and UAV for the management of degraded ecosystems: the case study of overgrazing in Randi Forest, Cyprus. Proc. SPIE 9229, RSCy2014, 92291V
Thiel, C. & Schmullius, C. (2017). Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective. Int. J. Remote. Sens., 38(8–10), 2411–2426
Tmušić, G., Manfreda, S., Aasen, H., James, M.R., Gonçalves, G., Ben-Dor, E., et al. 2020. Current practices in UAS-based environmental monitoring. Remote. Sens., 12(6), 1001
Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A. & Merganič, J. (2019). UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas? Remote. Sens. 11, 721
Valladares, F. & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecology, Evolution, Syst. 39, 237–257
Van Iersel, W., Straatsma, M., Middelkoop, H. & Addink, E. (2018). Multitemporal classification of river floodplain vegetation using time series of UAV images. Remote. Sens, 10(7), 1144
Wang, L., Zhou, Y., Hu, Q., Tang, Z., Ge, Y., Smith, A. et al. (2021). Early detection of encroaching woody Juniperus virginiana and its classification in multi-species forest using UAS imagery and semantic segmentation algorithms. Remote. Sens., 13(10), 1975
Westergaard-Nielsen, A., Balstrøm, T., Treier, U.A., Normand, S. & Elberling, B. (2020). Estimating meltwater retention and associated nitrate redistribution during snowmelt in an Arctic tundra landscape. Environ. Res. Lett., 15(3), 034025
Wijesingha, J., Astor, T., Schulze-Brüninghoff, D. & Wachendorf, M. (2020). Mapping invasive Lupinus polyphyllus Lindl. in semi-natural grasslands using object-based image analysis of UAV-borne images. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(5), 391–406
Wong, C.Y. S., D’Odorico, P., Bhathena, Y., Arain, M.A. & Ensminger, I. (2019). Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote. Sens. Environ. 233: e111407
Wu, Z., Ni, M., Hu, Z., Wang, J., Li, Q. & Wu, G. (2019). Mapping invasive plant with UAV-derived 3D mesh model in mountain area—a case study in Shenzhen Coast, China. Int. J. Appl. Earth Observation Geoinf., 77, 129–139
Yaney-Keller, A., Santidrián Tomillo, P., Marshall, J.M. & Paladino, F.V. (2019). Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica. PLoS one, 14(6), e0217310
Yao, H., Qin, R. & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—a review. Remote. Sens., 11(12), 1443
Yuan, C., Zhang, Y. & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res., 45(7), 783–792