[en] Metabolic fatty liver disease caused by high-starch diet restricted the intensive and sustainable development of carnivorous fish such as largemouth bass. In this study, the combination liver proteomic and lipidomic approach was employed to investigate the key signaling pathways and identify the critical biomarkers of fatty liver in largemouth bass. Joint analysis of the correlated differential proteins and lipids revealed nine common metabolic pathways; it was determined that FABP1 were significantly up-regulated in terms of transporting more triglycerides into the liver, while ABCA1 and VDAC1 proteins were significantly down-regulated in terms of preventing the transport of lipids and cholesterol out of the liver, leading to triglyceride accumulation in hepatocyte, eventually resulting in metabolic fatty liver disease. The results indicate that FABP1, ABCA1 and VDAC1 could be potential biomarkers for treating metabolic fatty liver disease of largemouth bass.
Disciplines :
Entomology & pest control
Author, co-author :
Xue, Moyong ; Université de Liège - ULiège > TERRA Research Centre ; Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China ; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
Yao, Ting; Beijing Institute of Feed Control, Beijing 110108, China
Xue, Min ; Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Qin, Yuchang; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
Jia, Ming; Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
Li, Junguo; Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
Gu, Xu; Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
Language :
English
Title :
Mechanism Analysis of Metabolic Fatty Liver on Largemouth Bass (Micropterus salmoides) Based on Integrated Lipidomics and Proteomics.
This study was supported by the National Key Research and Development Program of China (2018YFD0900400 and 2019YFD0900200); The Agricultural Science and Technology Innovation Program of CAAS, China (CAAS-ASTIP-2017-FRI-08).
Sun C.F. Li J. Dong J.J. Niu Y.C. Hu J. Lian J.M. Li W.H. Li J. Tian Y.Y. Shi Q. et al. Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water Mol. Ecol. Resour. 2020 21 301 315 10.1111/1755-0998.13256 32985096
Li X.Y. Zheng S.X. Ma X.K. Cheng K.M. Wu G.Y. Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides) Amino Acids 2020 52 1043 1061 10.1007/s00726-020-02874-9 32683495
Zhou Y. Liu C. Largemouth bass Micropterus salmoides production in China Largemouth Bass Aquaculture Tidwell J.H. Coyle S.D. Bright L.A. 5M Publishing Ltd., Benchmark House Sheffield, UK 2019
Bai J. Li S. Development of Largemouth Bass (Micropterus salmoides) Culture John Wiley & Sons, Ltd. Hoboken, NJ, USA 2018
Yu H.H. Liang X.F. Chen P. Wu X.F. Zheng Y.H. Luo L. Qin Y.C. Long X.C. Xue M. Dietary supplementation of Grobiotic®-A increases short-term inflammatory responses and improves long-term growth performance and liver health in largemouth bass (Micropterus salmoides) Aquaculture 2018 500 327 337 10.1016/j.aquaculture.2018.10.033
Chen Y.F. Sun Z.Z. Liang Z.M. Xie Y.D. Tan X.H. Su J.L. Luo Q.L. Zhu J.Y. Liu Q.Y. Wang A.L. Addition of L-carnitine to formulated feed improved growth performance, antioxidant status and lipid metabolism of juvenile largemouth bass, Micropterus salmoides Aquaculture 2019 518 734434 10.1016/j.aquaculture.2019.734434
Yu L.L. Yu H.H. Liang X.F. Li N. Wang X. Li F.H. Wu X.F. Zheng Y.H. Xue M. Liang X.F. Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides) Fish Shellfish. Immunol. 2018 72 220 229 10.1016/j.fsi.2017.10.054
Amoah A. Coyle S.D. Webster C.D. Durborow R.M. Bright L.A. Tidwell J.H. Effects of graded levels of carbohydrate on growth and survival of largemouth bass, Micropterus salmoides J. World Aquac. Soc. 2008 39 397 405 10.1111/j.1749-7345.2008.00168.x
Lin S.M. Shi C.M. Mu M.M. Chen Y.J. Luo L. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides Fish Shellfish. Immunol. 2018 78 121 126 10.1016/j.fsi.2018.04.046
Asaoka Y. Terai S. Sakaida I. Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease Dis. Models Mech. 2013 6 905 914 10.1242/dmm.011981
Han T. Li X.Y. Wang J.T. Hu S.X. Jiang Y.D. Zhong X.D. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica Aquaculture 2014 434 145 150 10.1016/j.aquaculture.2014.08.012
Shi C.M. Zhao H. Zhai X.L. Chen Y.J. Lin S.M. Linseed oil can decrease liver fat deposition and improve antioxidant ability of juvenile largemouth bass, Micropterus salmoides Fish Physiol. Biochem. 2019 45 1513 1521 10.1007/s10695-019-00636-3
Goodwin A.E. Lochmann R.T. Tieman D.M. Mitchell A.J. Massive hepatic necrosis and nodular regeneration in largemouth bass fed diets high in available carbohydrate J. World Aquac. Soc. 2010 33 466 477 10.1111/j.1749-7345.2002.tb00026.x
Xu X.T. Chen N.S. Liu Z.K. Gou S.P. Jia Y. Effects of dietary starch sources and levels on liver histology in largemouth bass, Micropterus salmoide J. Shanghai Ocean. Univ. 2016 25 61 70
Ma H.J. Mou M.M. Pu D.C. Lin S.M. Chen Y.J. Luo L. Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides Aquaculture 2019 498 482 487 10.1016/j.aquaculture.2018.07.039
Wang Z. Kavdia K. Dey K.K. Pagala V.R. Kodali K. Liu D.T. Lee D.G. Sun H. Chepyala S.R. Cho J.H. High-throughput and deep-proteome profiling by 16-plex tandem mass tag labeling coupled with two-dimensional chromatography and mass spectrometry J. Vis. Exp. 2020 162 e61684 10.3791/61684 32894271
Liu M.W. Ge R. Liu W.L. Liu Q.M. Xia X. Lai M. Liang L.Z. Li C. Song L. Zhen B. et al. Differential proteomics profiling identifies LDPs and biological functions in high-fat diet-induced fatty livers J. Lipid Res. 2017 58 681 694 10.1194/jlr.M071407 28179399
Willians E.G. Wu Y.B. Jha P. Dubuis S. Blattmann P. Argmann C.A. Houten S.M. Amariuta T. Wolski W. Zamboni N. et al. Systems proteomics of liver mitochondria function Science 2016 352 aad0189 10.1126/science.aad0189 27284200
Niu L. Geyer P.E. Albrechtsen N.J.W. Gluud L.L. Santos A. Doll S. Treit P.V. Holst J.J. Knop F.K. Vilsbol T. et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease Mol. Syst. Biol. 2019 15 e8793 10.15252/msb.20188793
Zhang Y. Zhan C. Chen G.W. Sun J.Y. Labelfree quantitative proteomics and bioinformatics analyses of alcoholic liver disease in a chronic and binge mouse model Mol. Med. Rep. 2018 18 2079 2087
Assini J.M. Mulvihill E.E. Huff M.W. Citrus flavonoids and lipid metabolism Curr. Opin. Lipidol. 2013 24 34 40 10.1097/MOL.0b013e32835c07fd
Feng K.L. Lan Y.Q. Zhu X.A. Li J. Chen T. Huang Q.R. Ho C.T. Chen Y.J. Cao Y. Hepatic Lipidomics analysis reveals the antiobesity and cholesterol-lowering effects of tangeretin in high-fat diet-fed rats J. Agric. Food Chem. 2020 68 6142 6153 10.1021/acs.jafc.0c01778
Yang K. Han X. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences Trends Biochem. Sci. 2016 41 954 969 10.1016/j.tibs.2016.08.010 27663237
Han X.L. Gross R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics J. Lipid Res. 2003 44 1071 1079 10.1194/jlr.R300004-JLR200 12671038
Chen H. Wei F. Dong X.Y. Xiang J.Q. Quek S.Y. Wang X.M. Lipidomics in food science Curr. Opin. Food Sci. 2017 16 80 87 10.1016/j.cofs.2017.08.003
Li Y.X. Luo Z.P. Wu X.L. Zhu J. Yu K. Jin Y. Zhang Z.W. Zhao S.H. Zhou L. Proteomic analyses of cysteine redox in high-fat-fed and fasted mouse livers: Implications for liver metabolic homeostasis J. Proteome Res. 2017 14 129 140 10.1021/acs.jproteome.7b00431
Kwon O.K. Kim S.J. Lee Y.M. Lee Y.H. Bae Y.S. Kim J.Y. Peng X.J. Cheng Z.Y. Zhao Y.M. Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio) Proteomics 2016 16 136 149 10.1002/pmic.201500017
Enes P. Panserat S. Kaushik S. Oliva-Teles A. Nutritional regulation of hepatic glucose metabolism in fish Fish Physiol. Biochem. 2008 35 519 539 10.1007/s10695-008-9259-5
Hemre G.I. Mommsen T.P. Krogdahl A. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes Aquac. Nutr. 2002 8 175 194 10.1046/j.1365-2095.2002.00200.x
Liang X.F. Chen P. Wu X.L. Xing S.J. Morais S. He M.L. Gu X. Xue M. Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass Antioxidants 2022 11 577 10.3390/antiox11030577
Zhang Y.M. Xie S.W. Wei H.L. Zheng L. Liu Z.L. Fang H.H. Xie J.J. Liao S.Y. Tian L.X. Liu Y.J. High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of Juvenile largemouth bass, Micropterus salmoides Aquac. Nutr. 2020 26 1083 1095 10.1111/anu.13066
Yu H.H. Zhang L.L. Chen P. Liang X.F. Cao A.Z. Han J. Wu X.F. Zheng Y.H. Qin Y.C. Xue M. Dietary Bile Acids Enhance Growth, and Alleviate Hepatic Fibrosis Induced by a High Starch Diet via AKT/FOXO1 and cAMP/AMPK/SREBP1 Pathway in Micropterus salmoides Front. Physiol. 2019 10 1430 10.3389/fphys.2019.01430
English A.R. Voeltz G.K. Endoplasmic reticulum structure and interconnections with other organelles Cold Spring Harb. Perspect. Biol. 2013 5 a013227 10.1101/cshperspect.a013227 23545422
Juan R.C. Sarah E.B. Laurie H.G. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer Cell 2017 168 692 706
Michael J. Endoplasmic reticulum stress in nonalcoholic fatty liver disease Annu. Rev. Nutr. 2012 32 17 33
Christopher L. Melinda A. Michael J. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease BioFactors 2011 37 8 16
Pan Y. Cao F. Guo A. Chang W. Ma W. Gao X. Guo S. Fu C. Zhu J. Endoplasmic reticulum ribosome-binding protein 1, RRBP1, promotes progression of colorectal cancer and predicts an unfavourable prognosis Br. J. Cancer 2015 113 763 772 10.1038/bjc.2015.260 26196185
Tsai H.Y. Yang Y.F. Wu A.T. Yang C.J. Liu Y.P. Jan Y.H. Lee C.H. Hsiao Y.W. Yeh C.T. Shen C.N. Endoplasmic reticulum ribosome-binding protein1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78 Oncogene 2013 32 4921 4931 10.1038/onc.2012.514
Liang X.S. Sun S.S. Zhang X.Y. Wu H. Tao W.Y. Liu T. Wei W. Geng J.S. Pang D. Expression of ribosome-binding protein 1 correlates with shorter survival in Her-2 positive breast cancer Cancer Sci. 2015 106 740 746 10.1111/cas.12666
Xiong L. Zhou X.R. Liu D. Liu G.C. Effect of overexpression of RRBP1 on metastasis and invasion of liver cancer cells J. Chengdu Med. Coll. 2021 16 5
Li H.Y. Wang Y.Z. Yang H.G. Zhang Y.D. Xing L. Wang J.Q. Zheng N. Furosine, a maillard reaction product, triggers necroptosis in hepatocytes by regulating the RIPK1/RIPK3/MLKL pathway Int. J. Mol. Sci. 2019 20 2388 10.3390/ijms20102388
Wu T. Zhang Y.Z. Transport Transporter on the Endoplasmic Reticulum-TRAP Chin. J. Biochem. Mol. Biol. 2008 24 95 100
Lu Y.C. Chang C.C. Wang C.P. Hung W.C. Tsai I.T. Tang W.H. Wu C.C. Wei C.T. Chung F.M. Lee Y.J. Circulating fatty acid-binding protein 1 (FABP1) and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus Int. J. Med. Sci. 2020 17 182 190 10.7150/ijms.40417 32038102
Wang G.Q. Shen H. Ganesh R. Roberts M.S. Gong Y.W. Jiang P. Burczynski F. Expression and antioxidant function of liver fatty acid binding protein in normal and bile-duct ligated rats Eur. J. Pharmacol. 2007 560 61 68 10.1016/j.ejphar.2007.01.015 17292345
Waikar S.S. Bonventre J.V. Biomarkers for the diagnosis of acute kidney injury Nephron Clin. Pract. 2008 109 c192 c197 10.1159/000142928 18802367
Carla G. Marta B. Sandra P.V. Marta M.M. Victoria G.M. M.Luz M.C. Javer G.G. Jose V.C. Sonia S.C. Ramiro J. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease Biochim. Biophys. Acta 2013 1831 803 818
Zhang Y. Anti-Hepatic Fibrosis Effects of Bifendate in Rat and Its Relationship with CBR1 and FABP1 Master’s Thesis Hebei Medical University Shijiazhuang, China 2015
Akbal E. Köklü S. Koçak E. Cakal B. Gunes F. Basar O. Tuna Y. Senes M. Liver fatty acid-binding protein is a diagnostic marker to detect liver injury due to chronic hepatitis C infection Arch. Med. Res. 2013 44 34 38 10.1016/j.arcmed.2012.11.007
Ozenirler S. Degertekin C.K. Erkan G. Elbeg S. Tuncer C. Kandilci U. Akyol G. Serum liver fatty acid binding protein shows good correlation with liver histology in NASH Hepatogastroenterology 2013 60 1095 1100
Akbal E. Koçak E. Akyürek Ö. Koklu S. Batgi H. Senes M. Liver fatty acid-binding protein as a diagnostic marker for non-alcoholic fatty liver disease Wien. Klin. Wochenschr. 2016 128 48 52 10.1007/s00508-014-0680-8
Hussain M.M. Shi J. Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly J. Lipid Res. 2003 44 22 32 10.1194/jlr.R200014-JLR200
Khatun I. Walsh M.T. Hussain M.M. Loss of both phospholipid and triglyceride transfer activities of microsomal triglyceride transfer protein in abetalipoproteinemia J. Lipid Res. 2013 54 1541 1549 10.1194/jlr.M031658
Love J.D. Suzuki T. Robinson D.B. Harris C.M. Johnson J.E. Mohler P.J. Jerome W.G. Swift L.L. Microsomal triglyceride transfer protein (MTP) associates with cytosolic lipid droplets in 3T3-L1 adipocytes PLoS ONE 2015 10 e0135598 10.1371/journal.pone.0135598
Iqbal J. Walsh M.T. Hammad S.M. Cuchel M. Tarugi P. Hegele R.A. Davidson N.O. Rader D.J. Klein R.L. Hussain M.M. Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but not glycosylceramide J. Biol. Chem. 2015 290 25863 25875 10.1074/jbc.M115.659110 26350457
Ueshima K. Akihisa-Umeno H. Nagayoshi A. Takakura S. Matsuo M. Mutoh S. Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western-type diet: Involvement of the inhibition of postprandial triglyceride elevation Biol. Pharm. Bull. 2005 28 247 252 10.1248/bpb.28.247 15684478
Kawano Y. Cohen D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease J. Gastroenterol. 2013 48 434 441 10.1007/s00535-013-0758-5
Chang X.X. Yan H.M. Fei J. Jiang M.H. Zhu H.G. Lu D.R. Gao X. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats J. Lipid Res. 2010 51 2504 2515 10.1194/jlr.M001958
Liu M. Chung S. Shelness G.S. Parks J.S. Hepatic ABCA1 and VLDL triglyceride production Biochim. Biophys. Acta 2012 1821 770 777 10.1016/j.bbalip.2011.09.020
Vaisman B.L. Lambert G. Amar M. Joyce C. Ito T. Shamburek R.D. Cain W.J. Fruchart N.J. Neufeld E.D. Remaley A.T. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice J. Clin. Investig. 2001 108 303 309 10.1172/JCI200112517
Vega-Badillo J. Gutiérrez-Vidal R. Hernández-Pérez H.A. Villanil R.Z. Leon M.P. Sanchez M.F. Moran R.S. Larriieta C.E. Fernandez S.I. Mendez S.N. et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects Liver Int. 2016 36 1383 1391 10.1111/liv.13109
Ma K.L. Ruan X.Z. Powis S.H. Chen Y. Moorhead J.F. Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice Hepatology 2008 48 770 778 10.1002/hep.22423
Fukunaga K. Imachi H. Lyu J. Dong T. Sato S. Ibata T. Kobayashi T. Yoshimoto T. Yonezaki K. Matsunaga T. IGF1 suppresses cholesterol accumulation in the liver of growth hormone-deficient mice via the activation of ABCA1 Am. J. Physiol. Endocrinol. Metab. 2018 315 1232 1241 10.1152/ajpendo.00134.2018
Wang C. Liu S.S. Lu L.L. Liao S.L. Yue H.Y. Dong Q.J. Xin Y.N. Xuan S.Y. Association Between Four ABCA1 gene Polymorphisms and Risk of Non-Alcoholic Fatty Liver Disease in a Chinese Han Population Hepat. Mon. 2018 6 e66149 10.5812/hepatmon.66149
Farrell G.C. Larter C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis Hepatology 2006 43 S99 S112 10.1002/hep.20973 16447287
Feng S.M. Gan L. Yang C.S. Liu A.B. Lu W.Y. Shao P. Dai Z.Q. Sun P.L. Luo Z.S. Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis J. Agric. Food Chem. 2018 66 3417 3425 10.1021/acs.jafc.7b06146 29583004
Perla F.M. Prelati M. Lavorato M. Visicchio D. Anania C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease Children 2017 4 46 10.3390/children4060046
Zhai R.N. Feng L. Zhang Y. Liu W. Li S.L. Hu Z.Y. Combined Transcriptomic and Lipidomic Analysis Reveals Dysregulated Genes Expression and Lipid Metabolism Profiles in the Early Stage of Fatty Liver Disease in Rats Front. Nutr. 2021 8 733197 10.3389/fnut.2021.733197
Goldberg I.J. Ginsberg H.N. Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease Gastroenterology 2006 130 1343 1346 10.1053/j.gastro.2006.02.040
Ma L.N. Feng M. Zhou Y.Z. The relationship between nonalcoholic fatty liver disease and insulin resistance J. Clin. Hepatol. 2010 26 173 175
Zhang C.H. Zhou B.G. Sheng J.Q. Chen Y. Cao Y.Q. Chen C. Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies Pharmacol. Res. 2020 159 104984 10.1016/j.phrs.2020.104984
Marieke D.V. Westerink J. EL-Morabit F. Kaasjager H.A.H. De Valk H.W. Prevalence of non-alcoholic fatty liver disease (NAFLD) and its association with surrogate markers of insulin resistance in patients with type 1 diabetes Diabetes Res. Clin. Pract. 2022 186 109827
Byrne C.D. Dorothy Hodgkin Lecture: Non-alcoholic fatty liver disease, insulin resistance and ectopic fat: A new problem in diabetes management Diabet. Med. 2019 29 1098 1107 10.1111/j.1464-5491.2012.03732.x
Marjot T. Moolla A. Cobbold J.F. Hodson L. Tomlinson J.W. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management Endocr. Rev. 2020 41 66 117 10.1210/endrev/bnz009 31629366
Holland W.L. Summers S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism Endocr. Rev. 2008 29 381 402 10.1210/er.2007-0025 18451260
Kotronen A. Seppänen-Laakso T. Westerbacka J. Kiviluoto T. Arola J. Ruskeepaa A.L. Yki-Jarvinen H. Oresic M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum Obesity 2010 18 937 944 10.1038/oby.2009.326 19798063
Llacuna L. Marí M. Garcia-Ruiz C. Fernandez-Checa J.C. Morales A. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury Hepatology 2006 44 561 572 10.1002/hep.21285
Regnier M. Polizzi A. Guillou H. Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases Biochimie 2019 1590 9 22 10.1016/j.biochi.2018.07.021
Chocian G. Chabowski A. Żendzian-Piotrowska M.E. Harasim E. Lukaszuk B. Gorski J. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei Mol. Cell. Biochem. 2010 340 125 131 10.1007/s11010-010-0409-6
Brown E.M. Fatty liver? Microbiome sphingolipids to the rescue Cell Host Microbe 2022 30 755 757 10.1016/j.chom.2022.05.008
Dowman J.K. Tomlinson J.W. Newsome P.N. Pathogenesis of non-alcoholic fatty liver disease Int. J. Med. 2010 103 71 83 10.1093/qjmed/hcp158
Amrutkar M. Cansby E. Chursa U. Nunez-Duran E. Chanclon B. Stahlman M. Friden V. Manneras-Holm L. Wickman A. Smith U. et al. Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model Diabetes 2015 64 2791 2804 10.2337/db15-0060
Martin G.G. Danneberg H. Kumar L.S. Atshaves B.P. Erol E. Bader M. Schroeder F. Binas B. Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene J. Biol. Chem. 2003 278 21429 21438 10.1074/jbc.M300287200
Atshaves B.P. McIntosh A.M. Lyuksyutova O.I. Zipfel W. Webb W.W. Schroeder F. Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes J. Biol. Chem. 2004 279 30954 30965 10.1074/jbc.M313571200 15155724
Mukai T. Egawa M. Takeuchi T. Yamashita H. Kusudo T. Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease FEBS Open Bio 2017 7 1009 1016 10.1002/2211-5463.12240 28680813
Newberry E.P. Xie Y. Kennedy S.M. Luo J. Davidson N.O. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice Hepatology 2006 44 1191 1205 10.1002/hep.21369 17058218
Martin G.G. Atshaves B.P. Huang H. Mclntosh A.L. Williams B.J. Pai P.J. Russell D.H. Kier A.B. Schroeder F. Hepatic phenotype of liver fatty acid binding protein gene-ablated mice Am. J. Physiol. Gastrointest. Liver Physiol. 2009 297 G1053 G1065 10.1152/ajpgi.00116.2009 19815623
Puri P. Baillie R.A. Wiest M.M. Mirshahi F. Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease Hepatology 2007 46 1081 1090 10.1002/hep.21763
Ioannou G.N. The Role of Cholesterol in the Pathogenesis of NASH Trends Endocrinol. Metab. 2016 27 84 95 10.1016/j.tem.2015.11.008
Sozen E. Ozer N.K. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review Redox Biol. 2017 12 456 461 10.1016/j.redox.2017.02.025 28319895
Oram J.F. Heinecke J.W. ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease Physiol. Rev. 2005 85 1343 1372 10.1152/physrev.00005.2005
Oram J.F. The ins and outs of ABCA J. Lipid Res. 2008 49 1150 1151 10.1194/jlr.E800006-JLR200
Tang C.R. Liu Y.H. Yang W. Storey C. McMillen T.S. Houston B.A. Heinecke J.W. LeBoeuf R.C. Hematopoietic ABCA1 deletion promotes monocytosis and worsens diet-induced insulin resistance in mice J. Lipid Res. 2016 57 100 108 10.1194/jlr.M064303
Kolovou V. Marvaki A. Boutsikou M. Vasilopoulos G. Degiannis D. Marvaki C. Kolovou G. Effect of ATP-binding Cassette Transporter A1 (ABCA1) Gene Polymorphisms on Plasma Lipid Variables and Common Demographic Parameters in Greek Nurses Open Cardiovasc. Med. J. 2016 10 233 239 10.2174/1874192401610010233 27990182
Clee S.M. Kastelein J.J. van Dam M. Marcil M. Roomp K. Zwarts K.Y. Collins J.A. Roelants R. Tamasawa N. Stulc T. et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes J. Clin. Investig. 2000 106 1263 1270 10.1172/JCI10727
Lee K. Kerner J. Hoppel C.L. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex J. Biol. Chem. 2011 286 25655 25662 10.1074/jbc.M111.228692 21622568
Tonazzi A. Giangregorio N. Console L. Indiveri C. Mitochondrial carnitine/acylcarnitine translocase: Insights in structure/ function relationships. Basis for drug therapy and side effects prediction Mini Rev. Med. Chem. 2015 15 396 405 10.2174/138955751505150408142032 25910653
Pittala S. Krelin Y. Kuperman Y. Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model Mol. Ther. 2019 27 1848 1862 10.1016/j.ymthe.2019.06.017 31375359
Turkaly P. Kerner J. Hoppel C. A 22 kDa polyanion inhibits carnitine-dependent fatty acid oxidation in rat liver mitochondria FEBS Lett. 1999 460 241 245 10.1016/S0014-5793(99)01354-X
Zhong Z. Lemasters J.J. A Unifying Hypothesis Linking Hepatic Adaptations for Ethanol Metabolism to the Proinflammatory and Profibrotic Events of Alcoholic Liver Disease Alcohol. Clin. Exp. Res. 2018 42 2072 2089 10.1111/acer.13877
Holmuhamedov E.L. Czerny C. Beeson C.C. Lemasters J.J. Ethanol suppresses ureagenesis in rat hepatocytes: Role of acetaldehyde J. Biol. Chem. 2012 287 7692 7700 10.1074/jbc.M111.293399
Shoshan-Barmatz V. Krelin A.Y. Shteinfer-Kuzmine T. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics Front. Oncol. 2017 7 154 10.3389/fonc.2017.00154
Maldonado E.N. Shoshan-Barmatz V. Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress Cell Stress 2017 1 11 36