An Extended Calibration of the Olivine–Spinel Aluminum Exchange Thermometer: Application to the Melting Conditions and Mantle Lithologies of Large Igneous Provinces
[en] Abstract
The application of the olivine–spinel aluminum exchange thermometer to natural samples is limited by the restricted experimental data set on which it was calibrated. Here, we present a new data set of 46 high-temperature crystallization experiments and 21 reanalyzed published experiments, which we used to extend the calibration to higher and lower temperatures. The final calibration data set spans a range of conditions relevant to crustal and upper mantle processes: 1174–1606°C, 0.1–1350 MPa, QFM − 2.5 to QFM + 7.2 (oxygen fugacity, fO2, reported in log units relative to the quartz–fayalite–magnetite buffer, QFM), and 0–7.4 wt % H2Omelt. We propose three new models. The first is thermodynamically self-consistent, based on spinel Fe, Mg, Al, and Cr compositions and Al exchange between olivine and spinel. The second and third are empirical models that consider fewer elemental exchanges: the second uses only Al exchange and spinel compositions, whereas the third considers olivine–spinel Al and Cr exchange. All models include the modest effect of pressure on olivine-spinel equilibrium chemistry, whereas fO2 and water content have negligible effects. In general, as fewer elements are considered in the olivine–spinel exchange, the fit to experimental data worsens. Conversely, the associated decrease in model complexity improves their robustness against systematic errors when applied to natural crystal pairs: the thermodynamic model may underestimate crystallization temperatures in natural samples due to spinel subsolidus re-equilibration, whereas the empirical models (independent of Fe and Mg in spinel) are less sensitive to re-equilibration but yield temperatures with larger uncertainties. We applied a statistical test to select the most appropriate model for application to natural samples. When applied to lavas from mid-ocean ridges, Iceland, Skye, Emeishan, Etendeka, and Tortugal, our new temperature estimates are 30–100°C lower than previously proposed. The lower temperature estimates cause a lower mantle melting temperature and significant impacts on the mantle lithology constraints.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Zhang, Yishen ; KU Leuven Department of Earth and Environmental Sciences, , 3000 Leuven, Belgium
Namur, Olivier; KU Leuven Department of Earth and Environmental Sciences, , 3000 Leuven, Belgium
Li, Weiran; University of Cambridge Department of Earth Sciences, , Downing Street, Cambridge CB2 3EQ, UK ; University of Hong Kong Department of Earth Sciences, , Pokfulam Road, Hong Kong, 999077, China
Shorttle, Oliver; University of Cambridge Department of Earth Sciences, , Downing Street, Cambridge CB2 3EQ, UK
Gazel, Esteban; Cornell University Department of Earth and Atmospheric Sciences, , Ithaca, NY, 14853, USA
Jennings, Eleanor; University of London Department of Earth and Planetary Sciences, Birkbeck, , Malet Street, London WC1E 7HX, UK
Thy, Peter; University of California Department of Earth and Planetary Sciences, , Davis, CA 95616, USA
Grove, Timothy L; Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, , 77 Massachusetts Avenue, Cambridge, 02139 Massachusetts, USA
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
An Extended Calibration of the Olivine–Spinel Aluminum Exchange Thermometer: Application to the Melting Conditions and Mantle Lithologies of Large Igneous Provinces
Abouchami, W., Hofmann, A. W., Galer, S. J. G., Frey, F. A., Eisele, J. & Feigenson, M. (2005). Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856. https://doi.org/10.1038/nature03402.
Alvarado, G. E., Denyer, P. & Sinton, C. W. (1997). The 89 ma Tortugal komatiitic suite, Costa Rica: implications for a common geological origin of the Caribbean and eastern Pacific region from a mantle plume. Geology 25, 439–442. https://doi.org/10.1130/00917613(1997)025<0439:TMTKSC>2.3.CO;2.
Ariskin, A. A. & Nikolaev, G. S. (1996). An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 1. Chromian spinels. Contributions to Mineralogy and Petrology 123, 282–292. https://doi.org/10.1007/s004100050156.
Ballhaus, C., Berry, R. F. & Green, D. H. (1991). High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology. 107, 27–40. https://doi.org/10.1007/BF00311183.
Barr, J. A., Grove, T. L. & Wilson, A. H. (2009). Hydrous komatiites from Commondale, South Africa: an experimental study. Earth and Planetary Science Letters 284, 199–207. https://doi.org/10.1016/j.epsl.2009.04.029.
Batanova, V. G., Sobolev, A. V. & Kuzmin, D. V. (2015). Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chemical Geology 419, 149–157. https://doi.org/10.1016/j.chemgeo.2015.10.042.
Batanova, V. G., Thompson, J. M., Danyushevsky, L. V., Portnyagin, M. V., Garbe-Schönberg, D., Hauri, E., Kimura, J. I., Chang, Q., Senda, R., Goemann, K., Chauvel, C., Campillo, S., Ionov, D. A. & Sobolev, A. V. (2019). New olivine reference material for in situ microanalysis. Geostandards and Geoanalytical Research 43, 453–473. https://doi.org/10.1111/ggr.12266.
Beattie, P. (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology. 115, 103–111. https://doi.org/10.1007/BF00712982.
Bechon, T., Billon, M., Namur, O., Bolle, O., Fugmann, P., Foucart, H., Devidal, J.-L., Delmelle, N. & Vander Auwera, J. (2022). Petrology of the magmatic system beneath Osorno volcano (central southern volcanic zone, Chile). Lithos 426-427, 106777. https://doi.org/10.1016/j.lithos.2022.106777.
Blundy, J., Melekhova, E., Ziberna, L., Humphreys, M. C. S., Cerantola, V., Brooker, R. A., McCammon, C. A., Pichavant, M. & Ulmer, P. (2020). Effect of redox on Fe–mg–Mn exchange between olivine and melt and an oxybarometer for basalts. Contributions to Mineralogy and Petrology 175, 103. https://doi.org/10.1007/s00410-020-01736-7.
Borisova, A. Y., Zagrtdenov, N. R., Toplis, M. J. & Guignard, J. (2020). New model of chromite and magnesiochromite solubility in silicate melts. arXiv preprint.
Brown Krein, S., Molitor, Z. J. & Grove, T. L. (2021). ReversePetrogen: a multiphase dry reverse fractional crystallization-mantle melting Thermobarometer applied to 13,589 Mid-Ocean ridge basalt glasses. Journal of Geophysical Research: Solid Earth 126, e2020JB021292. https://doi.org/10.1029/2020JB021292.
Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M., Merloni, A., Salvato, M., Donley, J. & Kocevski, D. (2014). X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astronomy & Astrophysics 564, A125. https://doi.org/10.1051/0004-6361/201322971.
Campbell, I. H. & Griffiths, R. W. (1990). Implications of mantle plume structure for the evolution of f lood basalts. Earth and Planetary Science Letters 99, 79–93. https://doi.org/10.1016/0012-821X(90)90072-6.
Charlier, B., Grove, T. L., Namur, O. & Holtz, F. (2018). Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the moon. Geochimica et Cosmochimica Acta 234, 50–69. https://doi.org/10.1016/j.gca.2018.05.006.
Chung, S.-L. & Jahn, B. (1995). Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 23, 889–892. https://doi.org/10.1130/00917613(1995)023<0889:PLIIGO>2.3.CO;2.
Coogan, L. A., Saunders, A. D. & Wilson, R. N. (2014). Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology 368, 1–10. https://doi.org/10.1016/j.chemgeo.2014.01.004.
D’Souza, R. J., Canil, D. & Coogan, L. A. (2020). Geobarometry for spinel peridotites using Ca and Al in olivine. Contributions to Mineralogy and Petrology 175, 5. https://doi.org/10.1007/s00410-019-1647-6.
Darken, L. S. & Gurry, R. W. (1953) Physical chemistry of metals. New York: McGraw-Hill.
Droop, G. T. R. (1987). A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–435. https://doi.org/10.1180/minmag.1987.051.361.10.
Evans, T. M., O’Neill, C. H. S. & Tuff, J. (2008). The inf luence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochimica et Cosmochimica Acta 72, 5708–5721. https://doi.org/10.1016/j.gca.2008.09.017.
Falloon, T. J., Danyushevsky, L. V., Ariskin, A., Green, D. H. & Ford, C. E. (2007). The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas. Chemical Geology 241, 207–233. https://doi.org/10.1016/j.chemgeo.2007.01.015.
Feroz, F. & Hobson, M. P. (2008). Multimodal nested sampling: an efficient and robust alternative to Markov chain Monte Carlo methods for astronomical data analyses. Monthly Notices of the Royal Astronomical Society 384, 449–463. https://doi.org/10.1111/j.1365-2966.2007.12353.x.
Feroz, F., Hobson, M. P. & Bridges, M. (2009). MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical Society 398, 1601–1614. https://doi.org/10.1111/j.1365-2966.2009.14548.x.
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. (2013). Importance nested sampling and the MultiNest algorithm. arXiv preprint arXiv:1306.2144.
Ganguly, J. (2008) Thermodynamics in earth and planetary sciences. Berlin: Springer.
Gavrilenko, M., Batanova, V. G., Llovet, X., Krasheninnikov, S., Koshlyakova, A. N. & Sobolev, A. V. (2023). Secondary fluorescence effect quantification of EPMA analyses of olivine grains embedded in basaltic glass. Chemical Geology. 621, 121328. https://doi.org/10.1016/j.chemgeo.2023.121328.
Gavrilenko, M., Ozerov, A., Kyle, P. R., Carr, M. J., Nikulin, A., Vidito, C. & Danyushevsky, L. (2023). Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bulletin of Volcanology. 78, 47.
Gee, L. L. & Sack, R. O. (1988). Experimental petrology of Melilite Nephelinites. Journal of Petrology 29, 1233–1255. https://doi.org/10.1093/petrology/29.6.1233.
van Gerve, T., Namur, O., Wieser, P., Lamadrid, H., Hulsbosch, N. & Neave, D. (2021). Constraints on deep magmatic volatile budgets from olivine hosted melt inclusions: integrating 3D imaging with chemical microanalysis. AGU Fall Meeting Abstracts, V41C–V03C.
Ghiorso, M. S. (1990). Application of the Darken equation to mineral solid solutions with variable degrees of order-disorder. American Mineralogist 75, 539–543.
Ghiorso, M. S. & Sack, R. O. (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119, 197–212. https://doi.org/10.1007/BF00307281.
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. (2002). The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems 3, 1–35. https://doi.org/10.1029/2001GC000217.
Gibson, S. A. (2002). Major element heterogeneity in Archean to recent mantle plume starting-heads. Earth and Planetary Science Letters 195, 59–74. https://doi.org/10.1016/S0012-821X(01)00566-0.
Goltz, A. E., Krawczynski, M. J., Gavrilenko, M., Gorbach, N. V. & Ruprecht, P. (2020). Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano. Kamchatka. Contributions to Mineralogy and Petrology. 175, 1–26. https://doi.org/10.1007/s00410-020-01746-5.
Green, D. H. & Falloon, T. J. (2005) Primary magmas at mid-ocean ridges,“hotspots,” and other intraplate settings: Constraints on mantle potential temperature. In: Foulger G. R., Natland J. H., Presnall D. C. & Anderson D. L. (eds) Plates, plumes and paradigms. Geological Society of America, pp.217–247.
Gregg, P. M., Behn, M. D., Lin, J. & Grove, T. L. (2009). Melt generation, crystallization, and extraction beneath segmented oceanic transform faults. Journal of Geophysical Research: Solid Earth 114. https://doi.org/10.1029/2008JB006100.
Grove, T. L., Kinzler, R. J. & Bryan, W. B. (2013). Fractionation of mid-ocean ridge basalt (MORB). Mantle flow and melt generation at mid-ocean ridges. 71, 281–310. https://doi.org/10.1029/GM071p0281.
Guo, S., Ye, K., Chen, Y. & Liu, J.-B. (2009). A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram. Economic Geology 104, 881–886. https://doi.org/10.2113/gsecongeo.104.6.881.
Hamecher, E. A., Antoshechkina, P. M., Ghiorso, M. S. & Asimow, P. D. (2013). The molar volume of FeO–MgO–Fe2O3–Cr2O3–Al2O3–TiO2 spinels. Contributions to Mineralogy and Petrology 165, 25–43.
Hanson, B. & Jones, J. H. (1998). The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. American Mineralogist 83, 669–684. https://doi.org/10.2138/am-1998-7-801.
Heinonen, J. S., Jennings, E. S. & Riley, T. R. (2015). Crystallisation temperatures of the most mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chemical Geology 411, 26–35. https://doi.org/10.1016/j.chemgeo.2015.06.015.
Herzberg, C. & Asimow, P. D. (2015). PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems 16, 563–578. https://doi.org/10.1002/2014GC005631.
Herzberg, C., Asimow, P. D., Arndt, N., Niu, Y., Lesher, C. M., Fitton, J. G., Cheadle, M. J. & Saunders, A. D. (2007). Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems 8. https://doi.org/10.1029/2006GC001390.
Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484. https://doi.org/10.1130/00917613(2003)031<0481:AMGBPM>2.0.CO;2.
Holland, T. J., Green, E. C. & Powell, R. (2018). Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. Journal of Petrology 59, 881–900. https://doi.org/10.1093/petrology/egy048.
Hu, W.-J., Zhou, M.-F., Yudovskaya, M. A., Vikentyev, I. V., Malpas, J. & Zhang, P.-F. (2022). Trace elements in chromite as indicators of the origin of the Giant Podiform chromite deposit at Kempirsai, Kazakhstan. Economic Geology 117, 1629–1655. https://doi.org/10.5382/econgeo.4955.
Ito, M. & Ganguly, J. (2006). Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochimica et Cosmochimica Acta 70, 799–809. https://doi.org/10.1016/j.gca.2005.09.020.
Jennings, E. S., Gibson, S. A. & Maclennan, J. (2019). Hot primary melts and mantle source for the Paraná-Etendeka flood basalt province: new constraints from Al-in-olivine thermometry. Chemical Geology 529, 119287. https://doi.org/10.1016/j.chemgeo.2019.119287.
Jennings, E., Buisman, I. & Coull, P. (2020). Investigating mantle melting temperatures on earth, Mars and the moon using Al-in-olivine thermometry. AGU Fall Meeting Abstracts .
Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., Aarburg, S., Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman, C., Becker, S., Dücking, M., Brätz, H., Klemd, R., de Bruin, D., Canil, D., Cornell, D., de Hoog, C. J., Dalpé, C., Danyushevsky, L., Eisenhauer, A., Gao, Y., Snow, J. E., Groschopf, N., Günther, D., Latkoczy, C., Guillong, M., Hauri, E. H., Höfer, H. E., Lahaye, Y., Horz, K., Jacob, D. E., Kasemann, S. A., Kent, A. J. R., Ludwig, T., Zack, T., Mason, P. R. D., Meixner, A., Rosner, M., Misawa, K., Nash, B. P., Pfänder, J., Premo, W. R., Sun, W. D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D. & Woodhead, J. D. (2006). MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems 7. https://doi.org/10.1029/2005GC001060.
Jollands, M. C., O’Neill, H. S. C., Van Orman, J., Berry, A. J., Hermann, J., Newville, M. & Lanzirotti, A. (2018). Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200–1500 ◦C and 1 bar. Geochimica et Cosmochimica Acta 220, 407–428. https://doi.org/10.1016/j.gca.2017.09.030.
Kamenetsky, V. S., Crawford, A. J. & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–671. https://doi.org/10.1093/petrology/42.4.655.
Katsura, T. & Ito, E. (1989). The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research: Solid Earth 94, 15663–15670. https://doi.org/10.1029/JB094iB11p15663.
Koshlyakova, A. N., Sobolev, A. V., Krasheninnikov, S. P., Batanova, V. G. & Borisov, A. A. (2022). Ni partitioning between olivine and highly alkaline melts: an experimental study. Chemical Geology 587, 120615. https://doi.org/10.1016/j.chemgeo.2021.120615.
Krasheninnikov, S. P., Sobolev, A. V., Batanova, V. G., Kargaltsev, A. A. & Borisov, A. A. (2017). Experimental testing of olivine–melt equilibrium models at high temperatures. Doklady Earth Sciences 475, 919–922. https://doi.org/10.1134/S1028334X17080153.
Lang, S., Mollo, S., France, L., Misiti, V. & Nazzari, M. (2022). Partitioning of Ti, Al, P, and Cr between olivine and a tholeiitic basaltic melt: insights on olivine zoning patterns and cation substitution reactions under variable cooling rate conditions. Chemical Geology 601, 120870. https://doi.org/10.1016/j.chemgeo.2022.120870.
Li, J., Huang, X.-L., Li, X.-H., Chu, F.-Y., Zhu, J.-H., Zhu, Z.-M. & Wang, H. (2021). Anomalously hot mantle source beneath the dragon f lag Supersegment of the southwest Indian ridge: new evidence from crystallisation temperatures of mid-ocean ridge basalts. Lithos 396-397, 106221. https://doi.org/10.1016/j.lithos.2021.106221.
Llovet, X. & Salvat, F. (2017). PENEPMA: a Monte Carlo program for the simulation of X-ray emission in electron probe microanalysis. Microscopy and Microanalysis 23, 634–646. https://doi.org/10.1017/S1431927617000526.
Llovet, X., Pinard, P. T., Donovan, J. J. & Salvat, F. (2012). Secondary fluorescence in electron probe microanalysis of material couples. Journal of Physics D: Applied Physics 45, 225301. https://doi.org/10.1088/0022-3727/45/22/225301.
Llovet, X., Gavrilenko, M., Batanova, V. G. & Sobolev, A. V. (2023). Element depletion due to missing boundary fluorescence in electron probe microanalysis: the case of Ni in olivine. Microscopy and Microanalysis 29, 1595–1609. https://doi.org/10.1093/micmic/ozad100.
Matthews, S., Shorttle, O. & Maclennan, J. (2016). The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry: mantle temperature from geothermometry. Geochemistry, Geophysics, Geosystems 17, 4725–4752. https://doi.org/10.1002/2016GC006497.
Matthews, S., Wong, K., Shorttle, O., Edmonds, M. & Maclennan, J. (2021). Do olivine crystallization temperatures faithfully record mantle temperature variability? Geochemistry, Geophysics, Geosystems 22, e2020GC009157. https://doi.org/10.1029/2020GC009157.
Matthews, S., Wong, K. & Gleeson, M. (2022). PyMelt: an extensible python engine for mantle melting calculations. Volcanica 5(2), 469–475. https://doi.org/10.30909/vol.05.02.469475.
Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. (2011). Fe–mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. Journal of Petrology 52, 1243–1263. https://doi.org/10.1093/petrology/egq089.
Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. (2013). The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. Journal of Petrology 54, 2521–2545. https://doi.org/10.1093/petrology/egt055.
Mckenzie, D. A. N. & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–679. https://doi.org/10.1093/petrology/29.3.625.
Médard, E. & Grove, T. L. (2008). The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contributions to Mineralogy and Petrology 155, 417–432. https://doi.org/10.1007/s00410-007-0250-4.
Milman-Barris, M. S., Beckett, J. R., Baker, M. B., Hofmann, A. E., Morgan, Z., Crowley, M. R., Vielzeuf, D. & Stolper, E. (2008). Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology 155, 739–765. https://doi.org/10.1007/s00410-007-0268-7.
Mitchell, A. L. & Grove, T. L. (2015). Melting the hydrous, subarc mantle: the origin of primitive andesites. Contributions to Mineralogy and Petrology 170, 13. https://doi.org/10.1007/s00410-015-1161-4.
Molendijk, S. M., Namur, O., Kaeghetso, E. K., Mason, P. R. D., Smets, B., Vander Auwera, J. E. & Neave, D. A. (2023a, 2023). Petrology of the Nyiragongo volcano, DR Congo Goldschmidt.
Molendijk, S. M., Namur, O., Mason, P. R., Dubacq, B., Smets, B., Neave, D. A. & Charlier, B. (2023b). Trace element partitioning in silica-undersaturated alkaline magmatic systems. Geochimica et Cosmochimica Acta 346, 29–53. https://doi.org/10.1016/j.gca.2023.01.025.
Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature 230, 42–43. https://doi.org/10.1038/230042a0.
Neave, D. A. & Namur, O. (2022). Plagioclase archives of depleted melts in the oceanic crust. Geology 50, 848–852. https://doi.org/10.1130/G49840.1.
Neave, D. A., Namur, O., Shorttle, O. & Holtz, F. (2019). Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth and Planetary Science Letters 520, 199–211. https://doi.org/10.1016/j.epsl.2019.06.003.
O’Hara, M. (1968). Are ocean floor basalts primary magma? Nature 220, 683–686. https://doi.org/10.1038/220683a0.
Parman, S. W. & Grove, T. L. (2004). Harzburgite melting with and without H2O: experimental data and predictive modeling: Harzburgite melting. Journal of Geophysical Research: Solid Earth 109. https://doi.org/10.1029/2003JB002566.
Phipps Morgan, J. (2001). Thermodynamics of pressure release melting of a veined plum pudding mantle. Geochemistry, Geophysics, Geosystems 2. https://doi.org/10.1029/2000GC000049.
Poustovetov, A. & Roeder, P. (2001). Numerical modeling of major element distribution between chromian spinel and basaltic melt, with application to chromian spinel in MORBs. Contributions to Mineralogy and Petrology 142, 58–71. https://doi.org/10.1007/s004100100272.
Prissel, T. C., Gross, J. & Draper, D. S. (2017) Application of Olivine-Spinel Eqilibria to Extraterrestrial Igneous Systems. In: Lunar and Planetary Sciences Conference. No. JSC-CN-38578.
Putirka, K. D. (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems 6. https://doi.org/10.1029/2005GC000915.
Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69, 61–120. https://doi.org/10.2138/rmg.2008.69.3.
Putirka, K. (2016). Rates and styles of planetary cooling on earth, moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe–Mg exchange, and mantle potential temperature. American Mineralogist 101, 819–840. https://doi.org/10.2138/am-2016-5402.
Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. (2007). Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology 241, 177–206. https://doi.org/10.1016/j.chemgeo.2007.01.014.
Ramsey, S. R., Howarth, G. H., Udry, A. & Gross, J. (2021). Nickel–manganese variability in olivine and Al-in-olivine thermometry for olivine-phyric shergottites. Meteoritics & Planetary Science 56(8), 1597–1618. https://doi.org/10.1111/maps.13721.
Riel, N., Kaus, B. J. P., Green, E. C. R. & Berlie, N. (2022). MAGEMin, an efficient Gibbs energy minimizer: application to igneous systems. Geochemistry, Geophysics, Geosystems 23, e2022GC010427. https://doi.org/10.1029/2022GC010427.
Roeder, P. L. & Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 29, 275–289. https://doi.org/10.1007/BF00371276.
Sack, R. O. (1982). Spinels as petrogenetic indicators: activity-composition relations at low pressures. Contributions to Mineralogy and Petrology 79, 169–186. https://doi.org/10.1007/BF01132886.
Sack, R. O. & Ghiorso, M. S. (1991a). An internally consistent model for the thermodynamic properties of Fe−mg-titanomagnetitealuminate spinels. Contributions to Mineralogy and Petrology 106, 474–505. https://doi.org/10.1007/BF00321989.
Sack, R. O. & Ghiorso, M. S. (1991b). Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist 76, 827–847.
Shea, T., Hammer, J. E., Hellebrand, E., Mourey, A. J., Costa, F., First, E. C., Lynn, K. J. & Melnik, O. (2019). Phosphorus and aluminum zoning in olivine: contrasting behavior of two nominally incompatible trace elements. Contributions to Mineralogy and Petrology 174, 85. https://doi.org/10.1007/s00410-019-1618-y.
Shorttle, O., Maclennan, J. & Lambart, S. (2014). Quantifying lithological variability in the mantle. Earth and Planetary Science Letters 395, 24–40. https://doi.org/10.1016/j.epsl.2014.03.040.
Sleep, N. H. (1992). Time dependence of mantle plumes: some simple theory. Journal of Geophysical Research: Solid Earth 97, 20007–20019. https://doi.org/10.1029/92JB01468.
Sleep, N. H. (1996). Lateral flow of hot plume material ponded at sublithospheric depths. Journal of Geophysical Research: Solid Earth 101, 28065–28083. https://doi.org/10.1029/96JB02463.
Snedecor, G. W. & Cochran, W. G. (1989) Statistical methods. In: Ames, 8thEdn edn. Ames, Iowa: Iowa state University Press, 54, pp.71–82.
Sobolev, A. V., Asafov, E. V., Gurenko, A. A., Arndt, N. T., Batanova, V. G., Portnyagin, M. V., Garbe-Schönberg, D. & Krasheninnikov, S. P. (2016). Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632. https://doi.org/10.1038/nature17152.
Sossi, P. A., Klemme, S., O’Neill, H. S. & C., Berndt, J. & Moynier, F. (2019). Evaporation of moderately volatile elements from silicate melts: experiments and theory. Geochimica et Cosmochimica Acta 260, 204–231. https://doi.org/10.1016/j.gca.2019.06.021.
Spandler, C. & O’Neill, H. S. C. (2010). Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300◦C with some geochemical implications. Contributions to Mineralogy and Petrology 159, 791–818. https://doi.org/10.1007/s00410-009-0456-8.
Spice, H. E., Fitton, J. G. & Kirstein, L. A. (2016). Temperature fluctuation of the Iceland mantle plume through time: Iceland mantle plume t fluctuations. Geochemistry, Geophysics, Geosystems 17, 243–254. https://doi.org/10.1002/2015GC006059.
Stroncik, N. A., Trumbull, R. B., Krienitz, M.-S., Niedermann, S., Romer, R. L., Harris, C. & Day, J. (2017). Helium isotope evidence for a deep-seated mantle plume involved in South Atlantic breakup. Geology 45, 827–830. https://doi.org/10.1130/G39151.1.
Thompson, J. B., Jr. (1969). Chemical reactions in crystals. American Mineralogist: Journal of Earth and Planetary Materials 54, 341–375.
Thompson, R. N., Gibson, S. A., Dickin, A. P. & Smith, P. M. (2001). Early cretaceous basalt and picrite dykes of the southern Etendeka region, NW Namibia: windows into the role of the Tristan mantle plume in Paraná–Etendeka magmatism. Journal of Petrology 42, 2049–2081. https://doi.org/10.1093/petrology/42.11.2049.
Thy, P. (1995). Low-pressure experimental constraints on the evolution of komatiites. Journal of Petrology 36, 1529–1548.
Toplis, M. J. (2005). The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology 149, 22–39. https://doi.org/10.1007/s00410-004-0629-4.
Toplis, M. J. & Carroll, M. R. (1995). An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral–melt Equilibria in Ferro-basaltic systems. Journal of Petrology 36, 1137–1170. https://doi.org/10.1093/petrology/36.5.1137.
Trela, J., Gazel, E., Sobolev, A. V., Moore, L., Bizimis, M., Jicha, B. & Batanova, V. G. (2017). The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nature Geoscience 10, 451–456. https://doi.org/10.1038/ngeo2954.
Tuff, J., Takahashi, E. & Gibson, S. A. (2005). Experimental constraints on the role of garnet Pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology 46, 2023–2058. https://doi.org/10.1093/petrology/egi046.
Vogt, K., Dohmen, R. & Chakraborty, S. (2015). Fe–Mg diffusion in spinel: new experimental data and a point defect model. American Mineralogist 100, 2112–2122. https://doi.org/10.2138/am-2015-5109.
Wan, Z., Coogan, L. A. & Canil, D. (2008). Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist 93, 1142–1147. https://doi.org/10.2138/am.2008.2758.
Wasylenki, L. E., Baker, M. B., Kent, A. J. & Stolper, E. M. (2003). Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. Journal of Petrology 44, 1163–1191. https://doi.org/10.1093/petrology/44.7.1163.
White, R. & McKenzie, D. (1989). Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research: Solid Earth 94, 7685–7729. https://doi.org/10.1029/JB094iB06p07685.
White, R. S. & McKenzie, D. (1995). Mantle plumes and flood basalts. Journal of Geophysical Research: Solid Earth 100, 17543–17585. https://doi.org/10.1029/95JB01585.
Wu, Y.-D., Yan, J.-H., Stagno, V., Nekrylov, N., Wang, J.-T. & Wang, H. (2022). Redox heterogeneity of picritic lavas with respect to their mantle sources in the Emeishan large igneous province. Geochimica et Cosmochimica ActaS0016703722000102 320, 161–178. https://doi.org/10.1016/j.gca.2022.01.001.
Xiao, L., Xu, Y. G., Mei, H. J., Zheng, Y. F., He, B. & Pirajno, F. (2004). Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume–lithosphere interaction. Earth and Planetary Science Letters 228, 525–546. https://doi.org/10.1016/j.epsl.2004.10.002.
Xu, Q.-S. & Liang, Y.-Z. (2001). Monte Carlo cross validation. Chemo-metrics and Intelligent Laboratory Systems 56, 1–11. https://doi.org/10.1016/S0169-7439(00)00122-2.
Xu, R. & Liu, Y. (2016). Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province. Lithos 266-267, 362–366. https://doi.org/10.1016/j.lithos.2016.10.016.
Xu, Y., Chung, S.-L., Jahn, B. & Wu, G. (2001). Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58, 145–168. https://doi.org/10.1016/S0024-4937(01)00055-X.
Zhang, L., Ren, Z.-Y., Zhang, L., Wu, Y.-D., Qian, S.-P., Xia, X.-P. & Xu, Y.G. (2021). Nature of the mantle plume under the Emeishan large Igneous Province: constraints from olivine-hosted melt inclusions of the Lijiang Picrites. Journal of Geophysical Research: Solid Earth 126, e2020JB021022. https://doi.org/10.1029/2020JB021022.
Zhang, Y., Namur, O. & Charlier, B. (2023). Experimental study of high-Ti and low-Ti basalts: liquid lines of descent and silicate liquid immiscibility in large igneous provinces. Contributions to Mineralogy and Petrology 178, 7. https://doi.org/10.1007/s00410-022-01990-x.