Paper published in a journal (Scientific congresses and symposiums)
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
Falkiewicz, Maciej; Takeishi, Naoya; Shekhzadeh, Imahn et al.
2023In Advances in Neural Information Processing Systems
Peer Reviewed verified by ORBi
 

Files


Full Text
2310.13402.pdf
Author postprint (1.06 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Statistics - Machine Learning; Computer Science - Learning
Abstract :
[en] Bayesian inference allows expressing the uncertainty of posterior belief under a probabilistic model given prior information and the likelihood of the evidence. Predominantly, the likelihood function is only implicitly established by a simulator posing the need for simulation-based inference (SBI). However, the existing algorithms can yield overconfident posteriors (Hermans *et al.*, 2022) defeating the whole purpose of credibility if the uncertainty quantification is inaccurate. We propose to include a calibration term directly into the training objective of the neural model in selected amortized SBI techniques. By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation. The proposed method is not tied to any particular neural model and brings moderate computational overhead compared to the profits it introduces. It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference. We empirically show on six benchmark problems that the proposed method achieves competitive or better results in terms of coverage and expected posterior density than the previously existing approaches.
Disciplines :
Computer science
Author, co-author :
Falkiewicz, Maciej
Takeishi, Naoya
Shekhzadeh, Imahn
Wehenkel, Antoine  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Delaunoy, Arnaud ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Kalousis, Alexandros
Language :
English
Title :
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
Publication date :
December 2023
Event name :
Advances in Neural Information Processing Systems
Event place :
New Orleans, United States - Louisiana
Event date :
December 2023
Audience :
International
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Code available at https://github.com/DMML-Geneva/calibrated-posterior
Available on ORBi :
since 07 November 2023

Statistics


Number of views
31 (9 by ULiège)
Number of downloads
10 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi