[en] CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Disciplines :
Immunology & infectious disease
Author, co-author :
Adams, Philipp; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg ; Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium ; Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
Fievez, Virginie; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
Schober, Rafaëla; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
Amand, Mathieu ; Université de Liège - ULiège > Département des sciences cliniques > GIGA-R : Immunopathologie - Maladies infectieuses et médecine interne générale ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
Iserentant, Gilles; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
Rutsaert, Sofie; HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
Dessilly, Géraldine; AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
Vanham, Guido; Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium ; Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
Hedin, Fanny; Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
Cosma, Antonio; Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
Moutschen, Michel ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
Vandekerckhove, Linos; HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
Seguin-Devaux, Carole; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
CD32+CD4+ memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice
Publication date :
2021
Journal title :
iScience
eISSN :
2589-0042
Publisher :
Elsevier Inc., United States
Volume :
24
Issue :
1
Pages :
101881
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen FNR - Fonds National de la Recherche
Funding text :
The authors would like to thank Jean-Marc Plesseria, Charlène Verschueren, Jean-Yves Servais, Christine Lambert, and Quentin Etienne for their technical support. We thank Tuesday Lowndes for revising the manuscript for English language. The study (HIV latency) was funded by a research grant from the Ministry of Research , the Fondation Recherche sur le SIDA of Luxembourg , an educational grant from ViiV Healthcare Benelux , and the FWO grant 1.8.020.09.N.00 (Linos L.V.). A.P. received a PhD AFR grant, F.V. a Mobility grant, and S.R. a PhD DTU PRIDE grant (Next-Immune) from The “Fonds National de la Recherche” in Luxembourg. R.S. received a strategic basic research fund of the Research Foundation – Flanders ( FWO , 1S32916N ) and V.L. a Collen-Francqui Research Professor Mandate.The authors would like to thank Jean-Marc Plesseria, Charl?ne Verschueren, Jean-Yves Servais, Christine Lambert, and Quentin Etienne for their technical support. We thank Tuesday Lowndes for revising the manuscript for English language. The study (HIV latency) was funded by a research grant from the Ministry of Research, the Fondation Recherche sur le SIDA of Luxembourg, an educational grant from ViiV Healthcare Benelux, and the FWO grant 1.8.020.09.N.00 (Linos L.V.). A.P. received a PhD AFR grant, F.V. a Mobility grant, and S.R. a PhD DTU PRIDE grant (Next-Immune) from The ?Fonds National de la Recherche? in Luxembourg. R.S. received a strategic basic research fund of the Research Foundation ? Flanders (FWO, 1S32916N) and V.L. a Collen-Francqui Research Professor Mandate. A.P. and F.V. setup the HIV-1 latency model in humanized mice, designed experiments, performed and analyzed all experiments, drafted figures, and wrote the manuscript; S.R. performed experiments in humanized mice and measured viral loads; A.M. performed and designed experiments in humanized mice and drafted figures; I.G. performed flow cytometry, cell sorting, cell cultures, and Flow SOM analysis; R.S. performed ddPCR assays for the measurement of CA HIV-1 RNA and CA HIV-1 DNA; D.G. setup the viral load assay; V.G. analyzed and designed the experiments; C.A. designed and conducted the multidimensional reduction analysis; H.F. performed flow SOM and cluster analysis; M.M. setup the humanized mouse model of HIV-1 infection and provided cord blood cells; V.L. designed the ddPCR studies and analyzed the results; S.-D.C designed, analyzed the data, supervised the study, and wrote the manuscript. All authors participated in the preparation and editing of the manuscript. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Abdel-Mohsen, M., Kuri-Cervantes, L., Grau-Exposito, J., Spivak, A.M., Nell, R.A., Tomescu, C., Vadrevu, S.K., Giron, L.B., Serra-Peinado, C., Genescà, M., Castellví, J., Wu, G., Del Rio Estrada, P.M., González-Navarro, M., Lynn, K., King, C.T., Vemula, S., Cox, K., Wan, Y., Li, Q., Mounzer, K., Kostman, J., Frank, I., Paiardini, M., Hazuda, D., Reyes-Terán, G., Richman, D., Howell, B., Tebas, P., Martinez-Picado, J., Planelles, V., Buzon, M.J., Betts, M.R., Montaner, L.J., CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci. Transl Med., 10, 2018, eaar6759.
Ananworanich, J., Schuetz, A., Vandergeeten, C., Sereti, I., de Souza, M., Rerknimitr, R., Dewar, R., Marovich, M., van Griensven, F., Sekaly, R., et al. Impact of multi-targeted antiretroviral treatment on gut t cell depletion and HIV reservoir seeding during acute hiv infection. PLoS One, 7, 2012, e33948.
Anderson, J.L., Khoury, G., Fromentin, R., Solomon, A., Chomont, N., Sinclair, E., Milush, J.M., Hartogensis, W., Bacchetti, P., Roche, M., et al. Human Immunodeficiency Virus (HIV)-Infected CCR6+ rectal CD4+ T cells and HIV Persistence on antiretroviral therapy. J. Infect. Dis. 221 (2020), 744–755.
Archin, N.M., Vaidya, N.V., Kuruc, J.D., Liberty, A.L., Wiegand, A., Kearney, M.F., Cohen, M.S., Coffin, J.M., Bosch, R.J., Gay, C.L., et al. Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. PNAS 109 (2012), 9523–9528.
Avettand-Fenoel, V., Hocqueloux, L., Ghosn, J., Cheret, A., Frange, P., Melard, A., Viard, J.P., Rouzioux, C., Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications. Clin. Microbiol. Rev. 29 (2016), 859–880.
Azzoni, L., Foulkes, A.S., Papasavvas, E., Mexas, A.M., Lynn, K.M., Mounzer, K., Tebas, P., Jacobson, J.M., Frank, I., Busch, M.P., et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J. Infect. Dis., 207, 2013, 213.
Badia, R., Ballana, E., Castellví, M., García-Vidal, E., Pujantell, M., Clotet, B., Prado, J.G., Puig, J., Martínez, M.A., Riveira-Muñoz, E., et al. CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nat. Comm., 9, 2018, 2739.
Banga, R., Procopio, F.A., Noto, A., Pollakis, G., Cavassini, M., Ohmiti, K., Corpataux, J.M., de Leval, L., Pantaleo, G., Perreau, M., PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med., 22, 2016, 754.
Banga, R., Procopio, F.A., Ruggiero, A., Noto, A., Ohmiti, K., Cavassini, M., Corpataux, J.M., Paxton, W.A., Pollakis, G., Perreau, M., Blood CXCR3+ CD4 T cells are enriched in inducible replication competent HIV in aviremic antiretroviral therapy-treated individuals. Front. Immunol., 9, 2018, 144.
Bertagnolli, L.N., White, J.A., Simonetti, F.R., Beg, S.A., Lai, J., Tomescu, C., Murray, A.J., Antar, A.A.R., Zhang, H., Margolick, J.B., et al. The role of CD32 during HIV-1 infection. Nature 7723 (2018), E17–E19.
Besson, G.J., Lalama, C.M., Bosch, R.J., Gandhi, R.T., Bedison, M.A., Aga, E., Riddler, S.A., McMahon, D.K., Hong, F., Mellors, J.W., HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin. Infect. Dis. 59 (2014), 1312–1321.
Blum, K.S., Pabst, R., Lymphocyte numbers and subsets in the human blood. Do they mirror the situation in all organs?. Immunol. Lett., 108, 2007, 45.
Bosque, A., Famiglietti, M., Weyrich, A.S., Goulston, C., Planelles, V., Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. Plos Pathog., 7, 2011, e1002288.
Bruel, T., Schwartz, O., Markers of the HIV-1 reservoir: facts and controversies. Curr. Opin. HIV AIDS 13 (2018), 383–388.
Buzon, M.J., Sun, H., Li, C., Shaw, A., Seiss, K., Ouyang, Z., Martin-Gayo, E., Leng, J., Henrich, T.J., Li, J.Z., et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med., 20, 2014, 139.
Buzon, M.J., Martin-Gayo, E., Pereyra, F., Ouyang, Z., Sun, H., Li, J.Z., Piovoso, M., Shaw, A., Dalmau, J., Zangger, N., et al. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J. Virol. 88 (2015), 10056–10065.
Cantero-Pérez, J., Grau-Expósito, J., Serra-Peinado, C., Rosero, D.A., Luque-Ballesteros, L., Astorga-Gamaza, A., Castellví, J., Sanhueza, T., Tapia, G., Lloveras, B., et al. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat. Commun., 10, 2019, 473.
Chavez, L., Calvanese, V., Verdin, E., HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog., 11, 2015, e1004955.
Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-Diab, B., Boucher, G., Boulassel, M.R., Ghattas, G., Brenchley, J.M., et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15 (2009), 893–900.
Chun, T.W., Engel, D., Berrey, M.M., Shea, T., Corey, L., Fauci, A.S., Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95 (1998), 8869–8873.
Chun, T.W., Nickle, D.C., Justement, J.S., Large, D., Semerjian, A., Curlin, M.E., O'Shea, M.A., Hallahan, C.W., Daucher, M., Ward, D.J., et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest., 115, 2005, 3250.
Cockerham, L.R., Siliciano, J.D., Sinclair, E., O'Doherty, U., Palmer, S., Yukl, S.A., Strain, M.C., Chomont, N., Hecht, F.M., Siliciano, R.F., et al. CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells. PLoS ONE, 9, 2014, e110731.
Cockerham, L.R., Jain, V., Sinclair, E., Glidden, D.V., Hartogenesis, W., Hatano, H., Hunt, P.W., Martin, J.N., Pilcher, C.D., Sekaly, R., et al. Programmed death-1 expression on CD4+ and CD8+ T cells in treated and untreated HIV disease. AIDS 28 (2014), 1749–1758.
Colby, D.J., Trautmann, L., Pinyakorn, S., Leyre, L., Pagliuzza, A., Kroon, E., Rolland, M., Takata, H., Buranapraditkun, S., Intasan, J., et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat. Med. 24 (2018), 923–926.
Conway, J.M., Perelson, A.S., Post-treatment control of HIV infection. Proc. Natl. Acad. Sci. USA, 112, 2015, 5467.
Crooks, A.M., Bateson, R., Cope, A.B., Dahl, N.P., Griggs, M.K., Kuruc, J.D., Gay, C.L., Eron, J.J., Margolis, D.M., Bosch, R.J., Archin, N.M., Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis., 212, 2015, 1361.
Darcis, G., Kootstra, N.A., Hooibrink, B., van Montfort, T., Maurer, I., Groen, K., Jurriaans, S., Bakker, M., van Lint, C., Berkhout, B., Pasternak, A.O., CD32+CD4+ T cells are highly enriched for HIV DNA and can support transcriptional latency. Cell Rep, 30, 2020 2284-e3.
Darcis, G., Berkhout, B., Pasternak, A.O., The quest for cellular markers of HIV reservoirs: any color you like. Front. Immunol., 10, 2019, 2251.
Day, C.L., Kaufmann, D.E., Kiepiela, P., Brown, J.A., Moodley, E.S., Reddy, S., Mackey, E.W., Miller, J.D., Leslie, A.J., DePierres, C., et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443 (2006), 350–354.
Deeks, S.G., Lewin, S.R., Ross, A.L., Ananworanich, J., Benkirane, M., Cannon, P., Chomont, N., Douek, D., Lifson, J.D., Lo, Y.R., et al. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat. Med., 22, 2016, 839.
Deng, K., Siliciano, R.F., HIV: early treatment may not be early enough. Nature 512 (2014), 35–36.
Descours, B., Avettand-Fenoel, V., Blanc, C., Samri, A., Mélard, A., Supervie, V., Theodorou, I., Carcelain, G., Rouzioux, C., Autran, B., Immune responses driven by protective human leukocyte antigen alleles from long-term nonprogressors are associated with low HIV reservoir in central memory CD4 T cells. Clin. Infect. Dis. 54 (2012), 1495–1503.
Descours, B., Petitjean, G., López-Zaragoza, J.L., Bruel, T., Raffel, R., Psomas, C., Reynes, J., Lacabaratz, C., Levy, Y., Schwartz, O., et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543 (2017), 564–567.
Eisele, E., Siliciano, R.F., Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37 (2012), 377–388.
Estes, J.D., Kityo, C., Ssali, F., Swainson, L., Makamdop, K.N., Del Prete, G.Q., Deeks, S.G., Luciw, P.A., Chipman, J.G., Beilman, G.J., et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med., 23, 2017, 1271.
Finzi, D., Hermankova, M., Pierson, T., Carruth, L.M., Buck, C., Chaisson, R.E., Quinn, T.C., Chadwick, K., Margolick, J., Brookmeyer, R., et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 278, 1997, 1295.
Fromentin, R., Bakeman, W., Lawani, M.B., Khoury, G., Hartogensis, W., DaFonseca, S., Killian, M., Epling, L., Hoh, R., Sinclair, E., et al. CD4+ T cells expressing PD-1, TIGIT and LAG-3 contribute to HIV persistence during ART. Plos Pathog., 12, 2016, e1005761.
Gianella, S., Anderson, C.M., Richman, D.D., Smith, D.M., Little, S.J., No evidence of posttreatment control after early initiation of antiretroviral therapy. AIDS, 29, 2015, 2093.
Gosselin, A., Wiche Salinas, T.R., Planas, D., Wacleche, V.S., Zhang, Y., Fromentin, R., Chomont, N., Cohen, É.A., Shacklett, B., Mehraj, V., et al. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 31 (2017), 35–48.
Halper-Stromberg, A., Lu, C.L., Klein, F., Horwitz, J.A., Bournazos, S., Nogueira, L., Eisenreich, T.R., Liu, C., Gazumyan, A., Schaefer, U., et al. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell, 158, 2014, 989.
Han, Y., Wind-Rotolo, M., Yang, H.C., Siliciano, J.D., Siliciano, R.F., Experimental approaches to the study of HIV-1 latency. Nat. Rev. Microbiol. 5 (2007), 95–106.
Hatano, H., Jain, V., Hunt, P.W., Lee, T.H., Sinclair, E., Do, T.D., Hoh, R., Martin, J.N., McCune, J.M., Hecht, F., et al. Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J. Infect. Dis., 208, 2013, 50.
Hazenberg, M.D., Stuart, J.W., Otto, S.A., Borleffs, J.C., Boucher, C.A., de Boer, R.J., Miedema, F., Hamann, D., T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood, 95, 2000, 249.
Hiener, B., Horsburgh, B.A., Eden, J.-S., Barton, K., Schlub, T.E., Lee, E., von Stockenstrom, S., Odevall, L., Milush, J.M., Liegler, T., et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep. 21 (2017), 813–822.
Hogan, L.E., Vasquez, J., Hobbs, K.S., Hanhauser, E., Aguilar-Rodriguez, B., Hussien, R., Thanh, C., Gibson, E.A., Carvidi, A.B., Smith, L.C.B., et al. Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30. Plos Pathog., 14, 2018, e1006856.
Holgado, M.P., Sananez, I., Raiden, S., Geffner, J.R., Arruvito, L., CD32 Ligation Promotes the Activation of CD4. Front. Immunol., 9, 2018, 2814.
Hunt, P.W., Martin, J.N., Sinclair, E., Bredt, B., Hagos, E., Lampiris, H., Deeks, S.G., T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J. Infect. Dis., 187, 2003, 1534.
Iglesias-Ussel, M., Vandergeeten, C., Marchionni, L., Chomont, N., Romerio, F., High levels of CD2 expression identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed subjects. J. Virol., 87, 2013, 9148.
Imamichi, H., Natarajan, V., Adelsberger, J.W., Rehm, C.A., Lempicki, R.A., Das, B., Hazen, A., Imamichi, T., Lane, H.C., Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS, 28, 2014, 1091.
Iordanskiy, S., Van Duyne, R., Sampey, G.C., Woodson, C.M., Fry, K., Saifuddin, M., Guo, J., Wu, Y., Romerio, F., Kashanchi, F., Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology, 485, 2015, 1.
Josefsson, L., Palmer, S., Faria, N.R., Lemey, P., Casazza, J., Ambrozak, D., Kearney, M., Shao, W., Kottilil, S., Sneller, M., et al. Single cell analysis of lymph node tissue from HIV-1 infected patients reveals that the majority of CD4+ T-cells contain one HIV-1 DNA molecule. Plos Pathog., 9, 2013, e1003432.
Katlama, C., Deeks, S.G., Autran, B., Martinez-Picado, J., van Lunzen, J., Rouzioux, C., Miller, M., Vella, S., Schmitz, J.E., Ahlers, J., et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 381 (2013), 2109–2117.
Khoury, G., Anderson, J.L., Fromentin, R., Hartogenesis, W., Smith, M.Z., Bacchetti, P., Hecht, F.M., Chomont, N., Cameron, P.U., Deeks, S.G., Lewin, S.R., Persistence of integrated HIV DNA in CXCR3 + CCR6 + memory CD4+ T cells in HIV-infected individuals on antiretroviral therapy. AIDS, 30, 2016, 1511.
Kwon, K.J., Timmons, A.E., Sengupta, S., Simonetti, F.S., Zhang, H., Hoh, R., Deeks, S.G., Siliciano, J.D., Siliciano, R.F., et al. Different human resting memory CD4+ T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci. Transl. Med., 12, 2020, eaax6795.
Laanani, M., Ghosn, J., Essat, A., Melard, A., Seng, R., Gousset, M., Panjo, H., Mortier, E., Girard, P.M., Goujard, C., et al. Impact of the timing of initiation of antiretroviral therapy during primary HIV-1 infection on the decay of cell-associated HIV-DNA. Clin. Infect. Dis., 60, 2015, 1715.
Laird, G.M., Eisele, E.E., Rabi, S.A., Lai, J., Chioma, S., Blankson, J.N., Siliciano, J.D., Siliciano, R.F., Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. Plos Pathog., 9, 2013, e1003398.
Lee, E., Bacchetti, P., Milush, J., Shao, W., Boritz, E., Douek, D., Fromentin, R., Liegler, T., Hoh, R., Steve, G., et al. Memory CD4 + T-cells expressing HLA-DR contribute to HIV persistence during prolonged antiretroviral therapy. Front. Microbiol., 10, 2019, 2214.
Van Lint, C., Bouchat, S., Marcello, A., HIV-1 transcription and latency: an update. Retrovirology, 10, 2013, 67.
Llewellyn, G.N., Seclén, E., Wietgrefe, S., Liu, S., Chateau, M., Pei, H., Perkey, K., Marsden, M.D., Hinkley, S.J., Paschon, D.E., et al. Humanized mouse model of HIV-1 latency with enrichment of latent virus in PD-1 + and TIGIT + CD4 T cells. J. Virol., 2019 e02086-18.
Lorenzo-Redondo, R., Fryer, H.R., Bedford, T., Kim, E.Y., Archer, J., Pond, S.L.K., Chung, Y.S., Penugonda, S., Chipman, J., Fletcher, C.V., et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature, 530, 2016, 51.
Lundgren, J.D., Lundgren, J.D., Babiker, A.G., Gordin, F., Emery, S., Grund, B., Sharma, S., Avihingsanon, A., Cooper, D.A., Fätkenheuer, G., et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N. Engl. J. Med. 373 (2015), 795–807.
Marsden, M.D., Loy, B.A., Wu, X., Ramirez, C.M., Schrier, A.J., Murray, D., Shimizu, A., Ryckbosch, S.M., Near, K.E., Chun, T.W., et al. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication. Plos Pathog., 13, 2017, e1006575.
Marsden, M.D., Zack, J.A., Humanized mouse models for human immunodeficiency virus infection. Annu. Rev. Virol. 4 (2017), 393–412.
Martin, G.E., Pace, M., Thornhill, J.P., Phetsouphanh, C., Meyerowitz, J., Gossez, M., Brown, H., Olejniczak, N., Lwanga, J., Ramjee, G., et al. CD32-expressing CD4 T cells are phenotypically diverse and can contain proviral HIV DNA. Front. Immunol., 9, 2018, 928.
Martinez-Picado, J., Deeks, S.G., Persistent HIV-1 replication during antiretroviral therapy. Curr. Opin. HIV AIDS, 11, 2016, 417.
Murray, A.J., Kwon, K.J., Farber, D.L., Siliciano, R.F., The latent reservoir for HIV-1: how immunologic memory and clonal expansion contribute to HIV-1 persistence. J. Immunol., 197, 2016, 407.
Namazi, G., Fajnzylber, J.M., Aga, E., Bosch, R.J., Acosta, E.P., Sharaf, R., Hartogensis, W., Jacobson, J.M., Connick, E., Volberding, P., et al. The control of HIV after antiretroviral medication pause (CHAMP) study: posttreatment controllers identified from 14 clinical studies. J. Infect. Dis. 218 (2018), 1954–1963.
Nischang, M., Sutmuller, R., Gers-Huber, G., Audigé, A., Li, D., Rochat, M.A., Baenziger, S., Hofer, U., Schlaepfer, E., Regenass, S., et al. Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1. PLoS One, 7, 2012, e38853.
Noto, A., Procopio, F.A., Banga, R., Suffiotti, M., Corpataux, J.M., Cavassini, M., Riva, A., Fenwick, C., Gottardo, R., Perreau, M., Pantaleo, G., CD32. J. Virol., 92, 2018.
Osuna, C.E., Lim, S.-Y., Kublin, J.L., Apps, R., Chen, E., Mota, T.M., Huang, S.-H., Ren, Y., Bachtel, N.D., Tsibris, A.M., et al. Evidence that CD32a does not mark the HIV-1 latent reservoir. Nature 561 (2018), E20–E28.
Palmer, S., Josefsson, L., Coffin, J.M., HIV reservoirs and the possibility of a cure for HIV infection. J. Intern. Med. 270 (2011), 550–560.
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. 2017, Department of Health and Human Services.
Pérez, L., Anderson, J., Chipman, J., Thorkelson, A., Chun, T.K., Moir, S., Haase, A.T., Douek, D.C., Timothy, W., Schacker, T.W., et al. Conflicting evidence for HIV enrichment in CD32+ CD4 T cells. Nature 561 (2018), E9–E16.
Policicchio, B.B., Pandrea, I., Apetrei, C., Animal models for HIV cure research. Front. Immunol., 7, 2016, 12.
Rothenberger, M., Nganou-Makamdop, K., Kityo, C., Ssali, F., Chipman, J.G., Beilman, G.J., Hoskuldsson, T., Anderson, J., Jasurda, J., Schmidt, T.E., et al. Impact of integrase inhibition compared with nonnucleoside inhibition on HIV reservoirs in lymphoid tissues. J. Acquir. Immune Defic. Syndr. 81 (2019), 355–360.
Sáez-Cirión, A., Bacchus, C., Hocqueloux, L., Avettand-Fenoel, V., Girault, I., Lecuroux, C., Potard, V., Versmisse, P., Melard, A., Prazuck, T., et al. Post-Treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. Plos Pathog., 9, 2013, e1003211.
Satheesan, S., Li, H., Burnett, J.C., Takahashi, M., Li, S., Wu, S.X., Synold, T.W., Rossi, J.J., Zhou, J., HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. J. Virol., 92, 2018 e02118–17.
De Scheerder, M.A., Vrancken, B., Dellicour, S., Schlub, T., Lee, E., Shao, W., Rutsaert, S., Verhofstede, C., Kerre, T., Malfait, T., et al. HIV rebound is predominantly fueled by genetically identical viral expansions from diverse reservoirs. Cell Host Microb 26 (2019), 347–358.e7.
Siliciano, J.D., Kajdas, J., Finzi, D., Quinn, T.Q., Chadwick, K., Margolick, J.B., Kovacs, C., Gange, S.J., Siliciano, R.F., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9 (2003), 727–728.
Siliciano, J.D., et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9 (2003), 727–728.
Soriano-Sarabia, N., Bateson, R.E., Dahl, N.P., Crooks, A.M., Kuruc, J.D., Margolis, D.M., Archin, N.M., Quantitation of replication-competent HIV-1 in populations of resting CD4+ T cells. J. Virol. 88 (2014), 14070–14077.
Ssebunya, R., Wanyenze, R.K., Lukolyo, H., Mutto, M., Kisitu, G., Amuge, P., Maganda, A., Kekitiinwa, A., Antiretroviral therapy initiation within seven days of enrolment: outcomes and time to undetectable viral load among children at an urban HIV clinic in Uganda. BMC Infect. Dis., 17, 2017, 439.
Strain, M.C., Little, S.J., Daar, E.S., Havlir, D.V., Gunthard, H.F., Lam, R.Y., Daly, O.A., Nguyen, J., Ignacio, C.C., Spina, C.A., et al. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J. Infect. Dis. 191 (2005), 1410–1418.
Thornhill, J.P., Pace, M., Martin, G.E., Hoare, J., Peake, S., Herrera, C., Phetsouphanh, C., Meyerowitz, J., Hopkins, E., Brown, H., et al. CD32 expressing doublets in HIV-infected gut-associated lymphoid tissue are associated with a T follicular helper cell phenotype. Mucosal Immunol. 12 (2019), 1212–1219.
Trautmann, L., Janbazian, L., Chomont, N., Said, E.A., Gimmig, S., Bessette, B., Boulassel, M.-R., Delwart, E., Sepulveda, H., Balderas, R.S., et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12 (2006), 1198–1202.
Vasquez, J.J., Aguilar-Rodriguez, B.L., Rodriguez, L., Hogan, L.E., Somsouk, M., McCune, J.M., Deeks, S.G., Laszik, Z.G., Hunt, P.W., Henrich, T.J., CD32-RNA Co-localizes with HIV-RNA in CD3+ cells found within gut tissues from viremic and ART-suppressed individuals. Pathog. Immun. 3 (2019), 147–160.
Whitney, J.B., Hill, A.L., Sanisetty, S., Penaloza-MacMaster, P., Liu, J., Shetty, M., Parenteau, L., Cabral, C., Shields, J., Blackmore, S., et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512 (2014), 74–77.
Whitney, J.B., Brad Jones, R., In vitro and in vivo models of HIV latency. Adv. Exp. Med. Biol., 2018, 241–263.
Williams, J.P., Hurst, J., Stöhr, W., Robinson, N., Brown, H., Fisher, M., Kinloch, S., Cooper, D., Schechter, M., Tambussi, G., et al. HIV-1 DNA predicts disease progression and post-treatment virological control. Elife, 12, 2014, e03821.
Wittner, M., Dunay, G.A., Kummer, S., Bockhorn, M., Hüfner, A., Schmiedel, S., Degen, O., van Lunzen, J., Eberhard, J.M., Schulze Zur Wiesch, J., CD32 expression of different memory t cell subpopulations in the blood and lymph nodal tissue of HIV patients and healthy controls correlates with immune activation. J. Acquir. Immune Def. Syndr. 77 (2018), 345–349.
Zerbato, J.M., McMahon, D.K., Sobolewski, M.D., Mellors, J.W., Sluis-Cremer, N., et al. Naive CD4+ T cells harbor a large inducible reservoir of latent, replication-competent human immunodeficiency virus type 1. Clin. Infect. Dis. 69 (2019), 1919–1925.