[en] When considering lattices or metamaterial local instabilities, corresponding to a change of the micro-structure morphology, classical computational homogenisation methods fail: first order computational homogenisation, which considers a classical continuum at the macro-scale, cannot capture localisation bands while second-order computational homogenisation, which considers a higher order continuum at the macro-scale, introduces a size effect with respect to the Representative Volume Element (RVE) size. The second-order computational homogenisation was thus reformulated using the idea of
an equivalent homogenised volume, from which arises at the micro-scale a non-uniform
body force that acts as a supplementary volume term over the RVE. In the presented
method, this non-uniform body-force expression arises from the Hill-Mandel condition
and depends mainly on the relation between the micro-scale and macro-scale deformation
gradients [1]. We show by considering elastic and elasto-plastic metamaterials and cellular
materials that this approach reduces the RVE size dependency on the homogenised
response. [1] Wu, L. and Mustafa, S. M. and Segurado, J. and Noels, L.. Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellularmaterials and metamaterials. Comput. Meth. in Appl. Mech. Eng. (2023) 407: 115931
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Segurado, Javier; IMDEA Materials
Mustafa, Syed Mohib ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3) ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Langue du document :
Anglais
Titre :
Body-force enhanced second-order computational homogenisation for non-linear cellular materials and metamaterials
Date de publication/diffusion :
11 octobre 2023
Nom de la manifestation :
ECCOMAS Thematic Conference: Computational Modelingof Complex Materials across the Scales (CMCS 2023)
Organisateur de la manifestation :
ECCOMAS
Lieu de la manifestation :
Eindhoven, Pays-Bas
Date de la manifestation :
10-13 October 2023
Sur invitation :
Oui
Manifestation à portée :
International
Projet européen :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Intitulé du projet de recherche :
Multiscale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM)
Organisme subsidiant :
EC - European Commission EU - European Union
N° du Fonds :
862015
Subventionnement (détails) :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project “Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme.