Article (Scientific journals)
Tryp: a dataset of microscopy images of unstained thick blood smears for trypanosome detection.
Anzaku, Esla Timothy; Mohammed, Mohammed Aliy; Ozbulak, Utku et al.
2023In Scientific Data, 10 (1), p. 716
Peer Reviewed verified by ORBi
 

Files


Full Text
0032_2023_Anzakuetal.pdf
Publisher postprint (2.88 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Animals; Humans; Microscopy; Artificial Intelligence; Neglected Diseases; Trypanosomiasis, African/diagnosis; Trypanosomiasis, African/parasitology; Trypanosoma; Trypanosoma brucei brucei; Library and Information Sciences; Statistics, Probability and Uncertainty; Computer Science Applications; Education; Information Systems; Statistics and Probability
Abstract :
[en] Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.
Disciplines :
Biotechnology
Author, co-author :
Anzaku, Esla Timothy ;  Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea. eslatimothy.anzaku@ugent.be ; IDLab, Ghent University, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium. eslatimothy.anzaku@ugent.be
Mohammed, Mohammed Aliy ;  IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium ; School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
Ozbulak, Utku;  Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Won, Jongbum;  Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Hong, Hyesoo;  Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Krishnamoorthy, Janarthanan;  School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
Van Hoecke, Sofie;  IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium
Magez, Stefan;  Biomedical Research Center, Ghent University Global Campus, Incheon, 21985, South Korea ; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium ; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
Van Messem, Arnout  ;  Université de Liège - ULiège > Département de mathématique > Statistique appliquée aux sciences
De Neve, Wesley ;  Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea ; IDLab, Ghent University, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium
Language :
English
Title :
Tryp: a dataset of microscopy images of unstained thick blood smears for trypanosome detection.
Publication date :
18 October 2023
Journal title :
Scientific Data
eISSN :
2052-4463
Publisher :
Springer Science and Business Media LLC, England
Volume :
10
Issue :
1
Pages :
716
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 25 October 2023

Statistics


Number of views
47 (5 by ULiège)
Number of downloads
18 (2 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi