Animals; Humans; Microscopy; Artificial Intelligence; Neglected Diseases; Trypanosomiasis, African/diagnosis; Trypanosomiasis, African/parasitology; Trypanosoma; Trypanosoma brucei brucei; Library and Information Sciences; Statistics, Probability and Uncertainty; Computer Science Applications; Education; Information Systems; Statistics and Probability
Abstract :
[en] Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.
Disciplines :
Biotechnology
Author, co-author :
Anzaku, Esla Timothy ; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea. eslatimothy.anzaku@ugent.be ; IDLab, Ghent University, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium. eslatimothy.anzaku@ugent.be
Mohammed, Mohammed Aliy ; IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium ; School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
Ozbulak, Utku; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Won, Jongbum; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Hong, Hyesoo; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea
Krishnamoorthy, Janarthanan; School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
Van Hoecke, Sofie; IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium
Magez, Stefan; Biomedical Research Center, Ghent University Global Campus, Incheon, 21985, South Korea ; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium ; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
Van Messem, Arnout ; Université de Liège - ULiège > Département de mathématique > Statistique appliquée aux sciences
De Neve, Wesley ; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, 21985, South Korea ; IDLab, Ghent University, Technologiepark-Zwijnaarde 126, B-9052, Ghent, Belgium
Language :
English
Title :
Tryp: a dataset of microscopy images of unstained thick blood smears for trypanosome detection.
Feasey, N., Wansbrough-Jones, M., Mabey, D. C. & Solomon, A. W. Neglected tropical diseases. British Medical Bulletin 93, 179–200, 10.1093/BMB/LDP046 (2010). DOI: 10.1093/BMB/LDP046
World Health Organization. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases (2010).
Pérez-Molina, J. A. & Molina, I. Chagas disease. The Lancet 391, 82–94, 10.1016/S0140-6736(17)31612-4 (2018). DOI: 10.1016/S0140-6736(17)31612-4
Büscher, P., Cecchi, G., Jamonneau, V. & Priotto, G. Human African trypanosomiasis. The Lancet 390, 2397–2409, 10.1016/S0140-6736(17)31510-6 (2017). DOI: 10.1016/S0140-6736(17)31510-6
World Health Organization. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. Tech. Rep., World Health Organization (2020).
Büscher, P. Diagnosis of African trypanosomiasis. In Trypanosomes and Trypanosomiasis, https://doi.org/10.1007/978-3-7091-1556-5_8 (Springer, 2014).
Desquesnes, M. et al. A review on the diagnosis of animal trypanosomoses 10.1186/s13071-022-05190-1 (2022). DOI: 10.1186/s13071-022-05190-1
Mulenga, G. M. et al. Tropical Medicine and Infectious Disease Challenges in the Diagnostic Performance of Parasitological and Molecular Tests in the Surveillance of African Trypanosomiasis in Eastern Zambia. Trop. Med. Infect. Dis. 6 (2021).
Zhang, J. K., He, Y. R., Sobh, N. & Popescu, G. Label-free colorectal cancer screening using deep learning and spatial light interference microscopy (SLIM). APL Photonics 5, https://doi.org/10.1063/5.0004723 (2020).
Fried, L. et al. Technological advances for the detection of melanoma: Advances in diagnostic techniques, https://doi.org/10.1016/j.jaad.2020.03.121 (2020).
Williams, B. M. et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 63, 10.1007/s00125-019-05023-4 (2020).
Holmström, O. et al. Point-of-Care Digital Cytology with Artificial Intelligence for Cervical Cancer Screening in a Resource-Limited Setting. JAMA Network Open 4, 10.1001/jamanetworkopen.2021.1740 (2021).
Vinod, D. N. & Prabaharan, S. R. Data science and the role of Artificial Intelligence in achieving the fast diagnosis of Covid-19. Chaos, Solitons and Fractals 140, https://doi.org/10.1016/j.chaos.2020.110182 (2020).
Zare, M. et al. A machine learning-based system for detecting leishmaniasis in microscopic images. BMC Infectious Diseases 22, 10.1186/s12879-022-07029-7 (2022).
Torres, K. et al. Automated microscopy for routine malaria diagnosis: A field comparison on Giemsa-stained blood films in Peru. Malaria Journal 17, 10.1186/s12936-018-2493-0 (2018).
Prieto, J. C. et al. Image Sequence Generation and Analysis via GRU and Attention for Trachomatous Trichiasis Classification. In Heinrich, M. et al. (eds.) Proceedings of the Fourth Conference on Medical Imaging with Deep Learning, vol. 143 of Proceedings of Machine Learning Research, 633–644 (PMLR, 2021).
De Souza, M. L. M., Lopes, G. A., Branco, A. C., Fairley, J. K. & Fraga, L. A. D. O. Leprosy screening based on artificial intelligence: Development of a cross-platform app. JMIR mHealth and uHealth 9, e23718, 10.2196/23718 (2021). DOI: 10.2196/23718
Ward, P. et al. Affordable artificial intelligence-based digital pathology for neglected tropical diseases: A proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears. PLoS Neglected Tropical Diseases 16, 10.1371/JOURNAL.PNTD.0010500 (2022).
Jiang, H. et al. Geometry-Aware Cell Detection with Deep Learning. mSystems 5, https://doi.org/10.1128/msystems.00840-19 (2020).
Morais, M. C. C. et al. Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images. PeerJ 10, 10.7717/peerj.13470 (2022).
Beery, S., Horn, G. V. & Perona, P. Recognition in Terra Incognita. In Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y. (eds.) 15th European Conference on Computer Vision, Munich,Germany, September 8-14, 2018, Proceedings, Part XVI, vol. 11220 of Lecture Notes in Computer Science, 472–489, https://doi.org/10.1007/978-3-030-01270-0_28 (Springer, 2018).
Sambasivan, N., Kapania, S. & Highfll, H. Everyone wants to do the model work, not the data work: Data cascades in high-stakes ai. In Conference on Human Factors in Computing Systems - Proceedings, https://doi.org/10.1145/3411764.3445518 (2021).
Rosenfeld, A., Zemel, R. S. & Tsotsos, J. K. The Elephant in the Room. CoRR abs/1808.03305 (2018).
Xiao, K. Y., Engstrom, L., Ilyas, A. & Madry, A. Noise or Signal: The Role of Image Backgrounds in Object Recognition. In International Conference on Learning Representations (2021).
Bissoto, A., Valle, E. & Avila, S. Debiasing skin lesion datasets and models? not so fast. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, https://doi.org/10.1109/CVPRW50498.2020.00378 (2020).
Zech, J. R. et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Medicine 15, 10.1371/journal.pmed.1002683 (2018).
DeGrave, A. J., Janizek, J. D. & Lee, S. I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nature Machine Intelligence 3, https://doi.org/10.1038/s42256-021-00338-7 (2021).
Anzaku, T. E. et al. Tryp: A trypanosome detection dataset using microscopy images of unstained thick blood smears. Figshare 10.6084/m9.figshare.22825787 (2023).
Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, https://doi.org/10.1109/CVPR.2016.91 (2016).
Wang, C.-Y., Bochkovskiy, A. & Liao, H.-Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CoRR abs/2207.02696, https://doi.org/10.48550/arXiv.2207.02696 (2022).
Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, https://doi.org/10.1109/TPAMI.2016.2577031 (2017).
Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? In Advances in neural information processing systems, 3320–3328 (2014).
Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10.1109/CVPR.2014.81 (2014).
Lin Tsung-Yiand Maire, M. B. S., James, H., Pietro, P., Deva, R. & Lawrence, D. P. Z. C. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, 740–755 (2014).