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Tryp: a dataset of microscopy 
images of unstained thick blood 
smears for trypanosome detection
Esla Timothy Anzaku   1,2,9 ✉, Mohammed Aliy Mohammed   3,4,9, Utku Ozbulak1, 
Jongbum Won1, Hyesoo Hong1, Janarthanan Krishnamoorthy4, Sofie Van Hoecke3, 
Stefan Magez5,6,7, Arnout Van Messem8 & Wesley De Neve   1,2

Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa 
and Latin America. The World Health Organization underscores the need for practical, field-adaptable 
diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial 
intelligence has shown promising results in disease screening, the lack of curated datasets impedes 
progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images 
of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset 
provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 
positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the 
largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object 
detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the 
Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, 
which may lead to improved healthcare outcomes for the communities impacted.

Background & Summary
Trypanosomiasis is a debilitating disease caused by pathogenic species of the trypanosome parasite. The World 
Health Organization (WHO) has categorized two forms of this condition, namely Chagas disease and human 
African trypanosomiasis (HAT), as neglected tropical diseases (NTDs)1,2. Chagas disease, also known as 
American trypanosomiasis, is caused by the parasite Trypanosoma cruzi and is primarily transmitted by infected 
triatomine bugs. This disease is mainly found in Latin America, affecting approximately six million individuals 
worldwide3. HAT, commonly referred to as sleeping sickness, is caused by two species of the Trypanosoma brucei 
parasite, namely T. b. gambiense and T. b. rhodesiense. Tsetse flies in sub-Saharan African nations are the primary 
vector for HAT transmission. If left untreated, HAT is usually chronic and fatal, with infected individuals fre-
quently succumbing within six months4.

NTDs exert devastating human, social, and economic burdens on over one billion people worldwide, caus-
ing approximately 200,000 fatalities each year5. This impact is especially concerning as it disproportionately 
affects the most impoverished, vulnerable, and marginalized populations, impeding the achievement of the 
third United Nations Sustainable Development Goal (SDG) of ensuring good health and well-being. To end 
the neglect of attaining the SDGs, the WHO 2021–2030 roadmap for NTDs has identified the development of 
effective field-adaptable diagnostics and rapid screening tools as a prerequisite for meeting their trypanosomi-
asis targets by 20305.

Despite its prevalence in the screening and diagnosis of trypanosomiasis, manual microscopy presents nota-
ble limitations, including its labor-intensive nature, low sensitivity, and the requirement for skilled personnel5–8. 
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Firstly, the labor-intensive nature of manual microscopy necessitates a significant commitment of time and 
resources, potentially causing delays in diagnosis and treatment in settings with high disease prevalence. 
Secondly, the inherent subjectivity of the approach can lead to inconsistencies in result interpretation, thereby 
compromising the sensitivity and overall diagnostic accuracy of the technique. Lastly, the necessity for skilled per-
sonnel, particularly problematic in resource-constrained environments where the disease is endemic, can signifi-
cantly impede effective disease screening and diagnostic practices due to limited access to trained professionals5.  
We posit that integrating Artificial Intelligence (AI) could substantially alleviate the aforementioned challenges 
inherent to manual microscopy in trypanosomiasis diagnosis. The potential application of AI to screen or diag-
nose diseases is promising and is receiving increasing research attention9–15. Researchers have also employed AI 
to detect or screen NTDs such as trachomatous trichiasis16, leprosy17, helminths and schistosoma18, and tryp-
anosomiasis19,20. While the current body of research on using AI for automated screening of trypanosomiasis 
from microscopy images of fresh unstained thick blood smears is relatively sparse, the choice to utilize unstained 
fresh blood samples was a deliberate one, informed by the urgent needs of prominent research laboratories 
in the field of trypanosomiasis research. This approach, which emphasizes efficiency and innovation, aims to 
obviate the need for staining techniques, potentially transforming the method by which parasites are identified 
in practice.

To address the limitations of manual microscopy, we have created a curated dataset for detecting trypano-
some parasites in microscopy images of unstained thick blood smears. Our dataset enables the training of deep 
learning models to detect the trypanosome parasite in these images. We further provide a benchmark on three 
leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. This 
way, we want to stimulate AI research on trypanosome parasite detection to help facilitate the achievement of 
the WHO targets.

Methods
The Tryp dataset has been curated to facilitate research on developing and assessing object detection models 
specifically tailored for trypanosomiasis screening. As visually summarized in Fig. 1, this section details the 
comprehensive procedures and methodologies employed in generating and characterizing this dataset.

Thick blood smear preparation.  Eight-week-old female C57BL/6 mice were purchased from Koatech 
(Gyeonggi-do, Republic of Korea) and infected by intraperitoneal injection using 5 × 103 T. b. brucei AnTat1.1E. 
All experiments were approved by the Institutional Animal Care and User Committee (IACUC) of the Ghent 
University Global Campus under the approval numbers GUGC-IACUC-2021-005 and GUGC-IACUC-2021-009. 
Thick-smear blood samples were prepared by taking a tail snip blood drop, placing it onto a microscopy glass, and 
covering it with a microscopy cover slip by gently applying pressure. Samples were always collected from mice 
that were part of other ongoing laboratory research experiments, and no animals were sacrificed specifically for 
this study.

Microscopy data acquisition.  Over multiple days, ten student researchers with diverse expertise, alongside 
a trypanosomiasis research expert, captured microscopy images in video sequences using two distinct Olympus 
microscope setups, shown in Fig. 2. Additional specifications for the two setups are provided in Table 1. While the 
IX83 microscope has built-in video capture capability, mobile phones were attached directly to the eyepiece of the 
CKX53 microscope to enable video capture. The models of the mobile phones used are iPhone 6, 6 S Plus, 12, and 
Samsung Galaxy Note 10. The video acquisition process resulted in 103 videos of infected blood samples and 11 
videos of non-infected blood samples.

Data quality is crucial in developing deep neural network (DNN) models for real-world applications, espe-
cially in critical areas such as health care. To ensure that the data acquisition process closely reflects real-world 
scenarios, we implemented specific measures, such as using thick blood smears that allow parasites to move in 
and out of visibility within the same microscope field of view (FOV). Additionally, we encouraged the expert and 
student researchers to (1) freely use the microscope settings that help them to confirm the presence or absence 
of parasites within the microscope FOV without any restrictions and (2) cover multiple FOVs in a single thick 
blood smear whenever possible. We provide a small sample of the extracted frames in Fig. 3 to illustrate the 
diversity in the capturing process.
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Fig. 1  Flow diagram of the Tryp dataset creation process.
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Frame extraction and selection.  Frame extraction.  The models evaluated in this study take images as 
input, requiring the conversion of captured videos in formats with extensions such as .mov, .avi, and .mpeg4 into 
a series of JPEG image frames, resulting in 40,931 images. However, the annotation of such a large number of 
images is cost-prohibitive, and the video capture process introduces limitations, including temporal redundancy 
and motion blur, which can diminish the effectiveness of certain frames for training DNN models. Temporal 
redundancy may arise in microscopy video capture of trypanosome parasites due to the fixed position of the 
microscope eyepiece and the smear slide, resulting in consecutive frames with minimal changes, despite the high 
motility of the parasites.

Frame selection.  To overcome the challenges outlined in the previous paragraph and reduce the annotation 
effort required, a procedure for the selection of frames to be included in the Tryp dataset was implemented.  
This procedure begins with the conversion of video files into a series of JPEG image frames. Subsequently, the 
mean squared error (MSE) between consecutive frames is calculated, along with the variance of the Laplacian 

Fig. 2  The microscopy video capture devices used to obtain the videos used in Tryp: an IX83 inverted Olympus 
microscope (left) and a simple manual Olympus CKX53 microscope (right).

Fig. 3  Randomly selected example images captured with the IX83 inverted Olympus microscope (top row) and 
Olympus CKX53 microscope (bottom row). The images of the microscopes used are shown in Fig. 2.

Microscope Magnification Objective
Numerical 
Aperture Configuration

Video Capture 
Mechanism Video Resolution

IX83 40x LUCPlanFL N 0.60 DIC Inbuilt 1,360 × 1,024

CKX53 20x LCAchN 0.40 iPC US2 Phase-contrast An attached Mobile Phone 1,920 × 1080, 720 × 404

Table 1.  Microscope Specifications and Video Capture Resolutions.
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to derive a blur score. These steps apply two simple computer vision techniques–motion blur check and frame 
differencing. Setting the stage for the critical process of frame selection, thresholds for both the MSE and blur 
scores are established, and only frames that exceed these thresholds are retained. The resulting set of 3,085 
representative frames is chosen to be included in the dataset. This entire process, executed using the Python 
programming language and the OpenCV library from https://opencv.org, reflects a methodical approach to 
frame selection that is underpinned by quantitative metrics. Figure 4 presents a visual overview of the processes 
described above.

Data annotation.  The annotation process involves defining a rectangle around observable parasites within 
microscopy images as illustrated in the magnified regions of the images in Fig. 5. Figure 6 provides additional 
examples, demonstrating the variation in trypanosome parasite concentration. We used two platforms for 
the annotation process: the online platform, Roboflow (https://roboflow.com), and the open-source platform 
Labelme (https://github.com/wkentaro/labelme. In both platforms, users draw tight bounding boxes around par-
asites, and the two coordinates (top left and bottom right) that fully describe the bounding boxes are automati-
cally recorded.

Roboflow enables the export of created annotations in various formats, including Microsoft Common 
Objects in Context (MS COCO) and text files, catering to our specific needs. For Labelme, we utilized its unique 
JavaScript Object Notation (JSON) file format for the annotations of each image. Since our models required 
specific formats, we developed custom Python scripts to convert the Labelme annotations into the MS COCO 
and text formats required for our experiments. We provide illustrative images in Fig. 6 to show examples of tight 
bounding boxes around parasites and variations in parasite density. Some captured microscopy images contain 
many visible parasites, while others contain fewer parasites.

Following best practices in object annotation, ten annotators engaged in a two-stage annotation process to 
maintain a consistent and unified standard. In the initial stage, seven annotators created preliminary annota-
tions. Subsequently, a separate group of three annotators, with a specific focus on maintaining the consistency 
and quality of annotations, rigorously verified and rectified any discrepancies, including missing or inadequately 
defined bounding boxes. This dual-stage process was implemented to ensure the highest accuracy and consist-
ency in our annotation effort, recognizing the importance of good quality annotations for training robust deep 
learning models.

The Tryp datset partitioning and bounding box characteristics.  The dataset comprises four par-
titions: train, validation, test, and “negative images”. The train, validation, and test partitions contain anno-
tated microscopy images of infected blood samples. In contrast, the “negative images” partition consists of 
non-annotated microscopy images from non-infected blood samples, serving as control samples for addi-
tional evaluation. In the following paragraphs, we will provide a detailed description of both the annotated and 
non-annotated dataset partitions.

Annotatated dataset partitioning.  The dataset comprises 3,085 microscopy images, each depicting blood 
samples infected with trypanosomes. We employed two strategies to partition the images in the Tryp dataset: 
Stratification by Video Frames (SVF) and Stratification by Entire Videos (SEV). The SVF method divides the 
dataset at the frame level, facilitating a balanced data distribution across different partitions. However, this strat-
egy carries the risk of producing overly optimistic performance outcomes. This is because the model is evaluated 
using distinct frames from videos partially exposed during training, which may inadvertently share unobserved 
characteristics. On the other hand, the SEV method allocates each video to a single partition, thereby eliminating 
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Fig. 4  A summary of the process for selecting the extracted frames to be included in the Tryp dataset.
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any overlap. Implemented within a cross-validation framework, this strategy precludes data leakage, upholds 
inter-frame correlations, and guarantees that the model is evaluated using entirely unrelated sets of videos.  
This, in turn, fosters a more rigorous evaluation of the capabilities of the model. Following the SVF approach, we 
randomly allocated the images into three separate partitions: train (1,893 images), validation (610 images), and 
test (612 images), maintaining an approximate ratio of 60:20:20. Figure 1 visually illustrates the process adopted 
to construct the dataset using the SVF approach. The detailed distribution of the images using the SVF method 
is shown in Table 2. For the SEV approach, we employed a 5-fold cross-validation evaluation methodology.  
The attributes of the folds are detailed in Table 3. The evaluation results for both strategies are detailed in the 
Results section. For the rest of the paper, mentioning the Tryp dataset without explicitly mentioning SEV refers 
to the partitions created using the SVF partitioning strategy

Fig. 5  Two example microscopy images and zoomed regions to show the trypanosome parasites, their size 
compared to blood cells, and how the bounding boxes are tightly drawn around them. In all images, blue boxes 
indicate bounding boxes created with the procedure discussed in the sub-section “Data Annotation”. Images in 
the top row are obtained with the IX83 inverted Olympus microscope, while those at the bottom are obtained 
with the Olympus CKX53 microscope.

Fig. 6  Example microscopy images obtained with the IX83 inverted Olympus (top row) and Olympus 
CKX53 (bottom row) microscopes. The left column images show microscopy images of blood smears 
containing many parasites, while those with fewer parasites are shown on the right column.

https://doi.org/10.1038/s41597-023-02608-y
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Characteristics of annotated bounding boxes.  Here, we delve into the characteristics of the generated bounding 
box annotations, and explore metrics that provide quantitative insights into the parasite density, spatial relation-
ships, and the overall parasite distribution within the images. We briefly describe these metrics and present their 
histogram plots.
Bounding box count per imageThe bounding box count per image represents a straightforward yet insightful 
metric, quantifying the number of bounding boxes annotated in each image. This count aids in assessing the 
complexity and diversity of the parasites within the image, providing essential information about parasite den-
sity and potential detection challenges. Differentiating between images with high and low bounding box counts 
offers valuable cues for tailoring detection algorithms to suit specific characteristics of parasite images.
Overlapping bounding box count per imageThis metric quantifies the number of pairwise overlaps between 
bounding boxes within an image, where an overlap is defined as a spatial intersection between two bounding 
boxes. For example, if bounding box A overlaps with B, and B overlaps with C, but A and C do not overlap, 
the count would be two. Understanding the prevalence of such overlaps helps assess the complexity of spatial 
arrangements within the dataset, offering a nuanced perspective on potential challenges in parasite detection.
Region-of-Interest (RoI) ratioIn this work, we introduce the RoI ratio metric to quantify the ratio of the com-
bined area of bounding boxes to the total area of an image. This quantity specifically considers the union of all 
bounding boxes within an image, thereby ensuring that overlapping regions are counted only once. The RoI ratio 
offers additional insight into the spatial distribution and density of parasites within images in the dataset and 
could aid in better understanding the characteristics of datasets.

The distributions of the bounding box count per image, overlapping bounding box count per image, and the 
RoI ratio can be found in Fig. 7, considering all the bounding boxes in the Tryp dataset. These histograms allow 
for a visual examination of the characteristics and trends of the annotated parasite bounding boxes within the 
Tryp dataset. We set the IoU to be at least 0.1 for two bounding boxes to be considered as overlapping.

Fold

1 2 3 4 5

Number of Frames
Train 2671 2508 2087 2623 2539

Validation 436 599 1020 484 568

Number of Videos
Train 64 65 65 65 65

Validation 17 16 16 16 16

Table 3.  Description of the 5-fold validation data.

Fig. 7  Histograms for three characteristics of the ground truth bounding box annotations for the Tryp dataset. 
These characteristics are: (a) the bounding box count per image, (b) the overlapping bounding box count per 
image, and (c) the RoI ratio.

Partition
Image 
Count

Parasite 
Count

IX83 Microscope CKX53 Microscope

Resolution A Resolution B Resolution C

Train 1,893 27,489 392 1,068 433

Validation 610 8,697 120 347 143

Test 612 9,094 125 347 140

Negative Images 93 0 93 0 0

Table 2.  A summary of the Tryp dataset characteristics, encompassing image and parasite counts across 
various partitions, as well as the distribution of images with respect to microscope type and image resolution. 
The resolutions denoted as Resolution A, Resolution B, and Resolution C correspond to 1,360 × 1,024, 
1,920 × 1,080, and 720 × 404 pixels, respectively.
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Non-annotated dataset partitioning.  DNN models are known to learn spurious correlations, which can affect 
their ability to generalize to data outside the training dataset21,22. Specifically, DNN models can learn inaccu-
rate correlations by mistaking chance relationships between relevant and non-relevant features in a dataset as 
genuine indicators of object presence in an image23,24. In health-related applications, annotation artifacts that 
could serve as sources for spurious correlations in skin cancer classification were studied25. Similarly, findings 
on the effect of spurious correlations in pneumonia26 and COVID-1927 detection using chest radiographs have 
also been published.

To encourage the development of trustworthy DNN models that rely less on spurious correlations, we cre-
ated a dataset partition of “negative images”, comprising microscopy images of non-infected blood samples. 
We obtained this partition of 93 images by applying blur and frame-differencing checks to all the extracted 
frames from the videos of non-infected blood samples, as illustrated in Fig. 1. The resulting partition provides 
an additional useful benchmark for evaluating the predictive performance of DNN models for trypanosomiasis 
detection. Ideally, a DNN model should not identify trypanosome parasites in the negative images; however, 
this may not always be true in practical settings. Consequently, if a DNN model predicts the presence of trypa-
nosome parasites in the negative images, the associated probabilities are anticipated to be lower than those for 
microscopy images of infected blood samples. This would suggest that the DNN model possesses potential for 
practical application outside the data used to train it.

Data Records
The Tryp dataset is available for download from figshare28. Notably, this dataset is distributed under a Creative 
Commons license, which fosters open access to scholarly resources. Decompression of Tryp.zip reveals three 
primary directories: positive_images, negative_images, and videos. The videos directory contains all the origi-
nal captured videos from which the images in the Tryp dataset were extracted; these videos are grouped into 
positive and negative directories. Within positive_images, there are three sub-directories: train, validation, and 
test. Each train, validation, and test directory in-turn contains two sub-directories, images and labels, and a 
JSON file. The directories images and labels contain the images and annotation files, respectively, in the format 
compatible with the You Only Look Once version 7 (YOLOv7)29,30 model. The JSON files contain the corre-
sponding annotations in the MS COCO format, suitable for training the Faster Region-based Convolutional 
Neural Networks (Faster R-CNN)31 and RetinaNet models. The naming format for the video and image files are 

train validation test

images labels images labelsimages labels
val.json test.jsontrain.json

positive_images

Tryp

negative_images videos

Fig. 8  Directory structure for the Tryp dataset.

Model Dataset Partition

Performance Metrics at IoU = 0.5

AP Precision Recall F1 score

Faster R-CNN
Validation 0.65 0.71 0.71 0.71

Test 0.63 0.71 0.70 0.71

RetinaNet
Validation 0.52 0.83 0.56 0.67

Test 0.50 0.82 0.55 0.66

YOLOv7
Validation 0.57 0.87 0.62 0.72

Test 0.55 0.87 0.62 0.72

Table 4.  Performance of the evaluated models on the Tryp dataset.

https://doi.org/10.1038/s41597-023-02608-y
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<video type>_<video number>.extension and <video type>_<video number>_<frame number>.exten-
sion, respectively. The video type could be positive_video or negative_video. Examples of a negative video and 
image file are negative_video_001.avi and negative_video_002_00000001.jpg, while those for a positive video and 
image file are positive_video_005.mp4 and positive_video_005_00000073.jpg. Figure 8 visualizes the structure of 
Tryp.zip. Additionally, Table 2 summarizes key characteristics of the Tryp dataset.

Technical Validation
The development of the Tryp dataset involved methodology decisions to enhance its research utility. This section 
outlines the measures adopted to ensure quality, making the dataset a reliable asset for further research. We dis-
cuss the criteria for selecting object detection models, the model training, and the model evaluation processes 
tailored to align with the evolving needs of trypanosomiasis research. Finally, we provide our evaluation results.

Model training and evaluation.  Object detection models.  In crafting a validation process for the Tryp 
dataset, the foremost consideration was the rich diversity encapsulated within this dataset. In alignment with this 
diversity, Faster R-CNN, RetinaNet, and YOLOv7 models were selected as a cross-section of prevalent methods 
in object detection literature. Our goal for selecting well-known models was to leverage their proven capabilities 
and to rigorously test whether they can achieve meaningful learning on the Tryp dataset.

Training process.  The training process is inspired by the well-recognized practice of transfer learning32, par-
ticularly the fine-tuning technique33. For Faster R-CNN and RetinaNet, we fine-tuned models pre-trained on 
the MS COCO dataset34 from the Torchvision GitHub repository (https://github.com/pytorch/vision). The back-
bone network is a pre-trained ResNet50, and we did not freeze any layers in this backbone network during 
fine-tuning on Tryp. We used the CyclicLR learning rate (LR) scheduler of Torchvision with a base LR of 10−5, 
maximum LR of 5 × 10−3, step_size_up of twenty, and triangular2 mode to optimize the training process. The 
input to the Faster R-CNN and RetinaNet models is an image resized to maintain the original aspect ratio, with 
its smallest side at least 800 pixels and its largest side at most 1333 pixels. The input image to the YOLOv7 model 
is resized to 640 × 640 resolution. After each epoch during fine-tuning, we evaluated the prediction performance 
of the models on the validation dataset to select the best models. We fine-tuned for one hundred epochs with 
a batch size of eight, using two NVIDIA Titan RTX GPUs. The best models on the validation dataset partition 
were selected as the final models. For YOLOv7, we used the default configuration of the base model from the 
original implementation30 without any changes. The fine-tuning epochs and final model selection process mir-
ror those used for Faster R-CNN and RetinaNet. The Faster R-CNN model took about eight hours to train, the 
RetinaNet model took about eight hours and thirty minutes, and the YOLOv7 model took about one hour and 
thirty minutes.

Evaluation process.  We evaluated all three models utilizing the SVF partitioning strategy. However, due to lim-
itations in computational resources and time, only the Faster R-CNN model was assessed using the SEV parti-
tioning strategy and 5-fold cross-validation. The evaluation metrics included recall, precision, average precision 
at an intersection over the union of 50% (AP@IoU0.5), and the F1 score. Adopting these metrics was strategically 
aimed at facilitating a comprehensive and rigorous analysis. Collectively, these metrics offer a depth of insight 
that a single measure, such as AP, could not provide, thereby enabling a more nuanced and holistic evaluation 
of model performance.

Results
Our goal of fine-tuning the selected object detection models on the Tryp dataset is to establish baseline perfor-
mance and assess the viability of directly detecting the trypanosome parasite from unstained thick blood smear 
microscopy images. We provide these results under three evaluation settings: (1) performance on the validation 
and test dataset partitions of Tryp (refer to Fig. 1), (2) performance under 5-fold cross-validation evaluation 
using the SEV strategy, and (3) performance on the negative images–the negative images in Fig. 1. In our evalua-
tion, we implemented a confidence threshold of 0.5, discarding predictions falling below this criterion. That way, 
we can mitigate the influence of improbable predictions, ensuring that our analysis prioritizes higher-confidence 
predictions. Furthermore, we can optimize the trade-off between precision and recall, yielding a more robust 
model performance evaluation.

Fig. 9  Precision-Recall curves for the detection performance of the evaluated models on the Tryp validation 
dataset partition (left) and the Tryp test dataset partition (right).
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Performance on the validation and test partitions.  First, we present the AP, precision, recall, and 
F1 score results in Table 4. We show the results for both the validation dataset partition, which was used to 
select the best model during training, and the test dataset partition. The results are comparable, indicating no 
over-fitting under these settings. As shown in Table 4, the models have different performances, with YOLOv7 
having the best precision and F1 score of 0.87 and 0.72, respectively. Faster R-CNN has the best AP and recall 
performance, obtaining a value of 0.71 for both metrics. The performance of the models can be further seen in the 
precision-recall curves in Fig. 9. Based on this presented figure, the YOLOv7 model achieves the highest precision 
among the compared models, while the Faster R-CNN model surpasses its counterparts in terms of recall.

Although informative, Table 4 does not provide information about the nature of the confidence the models 
assign to their predictions. We present this information as confidence histograms for all three models in Fig. 10. 
These histograms denote the counts of true positive and false positive predictions for each histogram bin. The 
figures show that all the models are likely to assign lower confidence to false positive predictions. While YOLOv7 
is more conservative in assigning confidence values closer to one, it is also less likely to assign high confidence 
to false predictions. Similarly, RetinaNet is less likely to assign high confidence to false positive predictions; 
however, it is not as conservative in assigning high confidence to true positive predictions. Faster R-CNN has the 
highest prediction count, i.e., fewer false negative predictions than the other two model models. It is also more 
likely to assign higher confidence to false predictions.

Performance under 5-fold cross-validation evaluation.  Table  5 summarizes the 5-fold 
cross-validation performance of a Faster R-CNN model trained on the Tryp dataset. The model exhibited 
a variation in AP across the five folds, with values ranging from 0.44 to 0.72, resulting in a mean AP of 0.61  
(std: 0.12). The precision of the model was relatively consistent, with values ranging from 0.69 to 0.86 and a 
mean precision of 0.79 (std: 0.06). The recall varied from 0.48 to 0.76, with a mean recall of 0.66 (std: 0.12).  
The F1 score, a measure of the model’s accuracy, ranged from 0.61 to 0.79, with a mean F1 score of 0.71 (std: 0.07). 
These results indicate that the model demonstrated reasonable and consistent performance across different folds 
in the 5-fold cross-validation evaluation, although there was some variation in recall and AP. We recommend the 
users of the Tryp dataset to additionally employ cross-validation, which presents a more realistic evaluation of 
model performance. The JSON files for the train and validation partitions of all the folds and the code to repro-
duce the 5-fold evaluation are provided in the code repository.

Performance on the negative images.  The negative images (Fig. 1) are images from blood samples of 
non-infected mice. By evaluating our models on this dataset, we can observe (i) how likely the models are to 

Fig. 10  Confidence histograms of the true positive (TP) and false positive (FP) predictions for the test dataset 
partition of Tryp. The three histograms represent the confidence generated by (a) Faster R-CNN, (b) RetinaNet, 
and (c) YOLOv7.

AP Precision Recall F1 score

Fold 0 0.72 0.82 0.76 0.79

Fold 1 0.63 0.69 0.70 0.70

Fold 2 0.70 0.78 0.76 0.77

Fold 3 0.55 0.78 0.62 0.69

Fold 4 0.44 0.86 0.48 0.61

Mean ± Std 0.61 ± 0.12 0.79 ± 0.06 0.66 ± 0.12 0.71 ± 0.07

Table 5.  5-Fold cross-validation performance for the Faster R-CNN model on the Tryp dataset.
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predict the presence of parasites when there are no parasites and (ii) how likely they are to assign high confi-
dence to false predictions. Faster R-CNN, RetinaNet, and YOLOv7 predicted 346, 31, and 103 parasite bounding 
boxes, respectively. The distribution of the assigned confidence is presented in Fig. 11. These plots indicate that 
RetinaNet is the least likely to predict bounding boxes for the negative images. Even when it does so, it is more 
likely to assign lower confidence than the two other models. YOLOv7 is the next better-performing model, while 
Faster R-CNN is the most likely to assign high confidence to false predictions. From this simple evaluation, we 
can infer that the Faster R-CNN model may have learned more features that may not necessarily indicate the pres-
ence of the parasites. More detailed experiments would be required to understand these preliminary results fully.

Usage Notes
During the construction of the Tryp dataset, significant manpower and methodical efforts were dedicated to 
identifying and annotating the parasite. Through this process, we recognized that certain annotation decisions 
were inherently subjective, and it is plausible that a minor portion of parasites may have been overlooked.  
The enhancement of the quality of a dataset is an ongoing endeavor that necessitates continuous scrutiny and 
refinement. Future research in object detection could provide valuable insights by offering actionable feedback 
to dataset creators, such as pinpointing potential false positive bounding boxes that correspond to missed par-
asite annotations. Such feedback mechanisms could be instrumental in enhancing the quality of subsequent 
datasets.

Moreover, while many species of trypanosome parasites may present a morphology analogous to the one in 
our dataset under comparable microscopy capture processes, it would be imprudent to generalize the findings of 
this study to other species without further assessment. Thus, there remains a significant opportunity for future 
investigations focusing on the out-of-domain generalization that might arise from the application of the Tryp 
dataset and other datasets that may be developed in the future.

Code availability
The code and detailed documentation on how to use it to reproduce the results presented in this study is publicly 
available at https://github.com/esla/trypanosome_parasite_detection under the permissive Berkeley Software 
Distribution (BSD) 3-Clause license.
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