Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Geochemistry and Petrology; Geophysics
Abstract :
[en] AbstractCrater morphology undergoes rapid changes at active volcanoes, and quantifying these changes during volcanic unrest episodes is crucial for assessing volcanic activity levels. However, various limitations, including restricted crater access, cloud cover, haze, and intra‐crater eruptive activity, often impede regular optical or on‐site crater monitoring. To overcome these challenges, we utilize multi‐sensor satellite Synthetic Aperture Radar (SAR) imagery to generate dense time series of quantitative indicators for monitoring crater morphological changes. By combining images from diverse satellites and acquisition modes, we achieve high temporal resolution. Nevertheless, due to variations in acquisition geometries, direct image comparisons become impractical. To address this, we develop PickCraterSAR, an open‐access Python tool that employs basic trigonometry assumptions to measure crater radius and depth from SAR amplitude images in radar geometry. We apply our methodology to study the crater collapse associated with the May 2021 and January 2002 eruptions of Nyiragongo volcano. Following the 2021 collapse, we estimate the maximum depth of the crater to be 850 m below the rim, with a total volume of 84 ± 10 Mm3. Notably, the post‐2021 eruption crater was 270 m deeper but only 15%–20% more voluminous compared to the post‐2002 eruption crater. Additionally, we demonstrate that the 2021 crater collapse occurred progressively while a dike intrusion migrated southward as a consequence of the drainage of the lava lake system. Overall, our study showcases the utility of multi‐sensor SAR imagery and introduces PickCraterSAR as a valuable tool for monitoring and analyzing crater morphological changes, providing insights into the dynamics of volcanic activity.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Smittarello, D. ; European Center for Geodynamics and Seismology Walferdange Grand Duchy of Luxembourg
Grandin, R. ; Université Paris Cité Institut de Physique du Globe de Paris CNRS Paris France
Jaspard, M.; European Center for Geodynamics and Seismology Walferdange Grand Duchy of Luxembourg
De Rauw, Dominique ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège) ; Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. de Río Negro‐CONICET General Roca Argentina
d'Oreye, N. ; European Center for Geodynamics and Seismology Walferdange Grand Duchy of Luxembourg ; Department of Geophysics/Astrophysics National Museum of Natural History Walferdange Grand Duchy of Luxembourg
Shreve, T. ; Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA ; Geophysical Institute University of Alaska Fairbanks Fairbanks AK USA
Debret, M. ; École et observatoire des sciences de la Terre Université de Strasbourg Strasbourg France
Theys, N.; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Brenot, H.; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Language :
English
Title :
Nyiragongo Crater Collapses Measured by Multi‐Sensor SAR Amplitude Time Series
Barrière, J., d'Oreye, N., Oth, A., Geirsson, H., Mashagiro, N., Johnson, J. B., et al. (2018). Single-station seismo-acoustic monitoring of Nyiragongo's lava lake activity (DR Congo). Frontiers in Earth Science, 82. https://doi.org/10.3389/feart.2018.00082
Barrière, J., d'Oreye, N., Smets, B., Oth, A., Delhaye, L., Subira, J., et al. (2022). Intra-crater eruption dynamics at Nyiragongo (DR Congo), 2002–2021. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023858. https://doi.org/10.1029/2021JB023858
Clarisse, L., Coheur, P.-F., Prata, F., Hadji-Lazaro, J., Hurtmans, D., & Clerbaux, C. (2013). A unified approach to infrared aerosol remote sensing and type specification. Atmospheric Chemistry and Physics, 13(4), 2195–2221. https://doi.org/10.5194/acp-13-2195-2013
Derauw, D., Jaspard, M., Caselli, A., & Samsonov, S. (2020). Ongoing automated ground deformation monitoring of Domuyo-Laguna del Maule area (Argentina) using sentinel-1 MSBAS time series: Methodology description and first observations for the period 2015–2020. Journal of South American Earth Sciences, 104, 102850. https://doi.org/10.1016/j.jsames.2020.102850
d'Oreye, N., Derauw, D., Samsonov, S., Jaspard, M., & Smittarello, D. (2021). MasTer: A full automatic multi-satellite InSAR mass processing tool for rapid incremental 2D ground deformation time series. In 2021 IEEE international geoscience and remote sensing symposium igarss (pp. 1899–1902). https://doi.org/10.1109/IGARSS47720.2021.9553615
Dualeh, E., Ebmeier, S., Wright, T., Albino, F., Naismith, A., Biggs, J., et al. (2021). Analyzing explosive volcanic deposits from satellite-based radar backscatter, Volcán de Fuego, 2018. Journal of Geophysical Research: Solid Earth, 126(9), e2021JB022250. https://doi.org/10.1029/2021jb022250
Dualeh, E., Ebmeier, S., Wright, T., Poland, M., Grandin, R., Stinton, A., & Camejo-Harry, M. (2021). Dome growth at La Soufriere, St. Vincent quantified from synthetic aperture radar backscatter. AGU Fall Meeting Abstracts, 2021, V14A–V08.
Dualeh, E., Ebmeier, S., Wright, T., Poland, M., Grandin, R., Stinton, A., et al. (2023). Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter. Earth and Planetary Science Letters, 603, 117980. https://doi.org/10.1016/j.epsl.2022.117980
Durieux, J. (2002). The pre-2002 activity-volcano Nyiragongo (DR Congo): Evolution of the crater and lava lakes fron the discovery to the present. In The pre-2002 activity-Volcano Nyiragongo (DR Congo): Evolution of the Crater and Lava Lakes fron the Discovery to the Present (Vol. 1000–1008).
Gudmundsson, M. T., Jónsdóttir, K., Hooper, A., Holohan, E. P., Halldórsson, S. A., Ófeigsson, B. G., et al. (2016). Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 353(6296), aaf8988. https://doi.org/10.1126/science.aaf8988
Jaspard, M., Smittarello, D., Grandin, R., Debret, M., Derauw, D., d’Oreye, N., & Shreve, T. (2023). PickCraterSAR (version 1.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.8177191
Komorowski, J., Tedesco, D., Kasereka, M., Allard, P., Papale, P., Vaselli, O., et al. (2002). The January 2002 flank eruption of Nyiragongo volcano (democratic republic of Congo): Chronology, evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. (pp. 1000–1035).
Lev, E., Ruprecht, P., Oppenheimer, C., Peters, N., Patrick, M., Hernández, P. A., et al. (2019). A global synthesis of lava lake dynamics. Journal of Volcanology and Geothermal Research, 381, 16–31. https://doi.org/10.1016/j.jvolgeores.2019.04.010
Liégeois, M., & Luntumbue, M. (2022). Défis et enjeux du plan de retrait de la MONUSCO.
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the earth's surface. Reviews of Geophysics, 36(4), 441–500. https://doi.org/10.1029/97rg03139
Moore, C., Wright, T., Hooper, A., & Biggs, J. (2019). The 2017 eruption of erta'ale volcano, Ethiopia: Insights into the shallow axial plumbing system of an incipient mid-ocean ridge. Geochemistry, Geophysics, Geosystems, 20(12), 5727–5743. https://doi.org/10.1029/2019gc008692
Muñoz, V., Walter, T. R., Zorn, E. U., Shevchenko, A. V., González, P. J., Reale, D., & Sansosti, E. (2022). Satellite radar and camera time series reveal transition from aligned to distributed crater arrangement during the 2021 eruption of Cumbre Vieja, La Palma (Spain). Remote Sensing, 14(23), 6168. https://doi.org/10.3390/rs14236168
Pallister, J. S., Schneider, D. J., Griswold, J. P., Keeler, R. H., Burton, W. C., Noyles, C., et al. (2013). Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. Journal of Volcanology and Geothermal Research, 261, 144–152. https://doi.org/10.1016/j.jvolgeores.2012.07.012
Pottier, Y. (1978). Première éruption historique du Nyiragongo et manifestations adventives simultanées du Volcan Nyamulagira (Chaîne des Virunga-Kivu-Zaire: Décembre 76-Juin 77). [Rapport Annuel]. Musée Royal de l'Afrique Centrale (Tervuren, Belgium), 157–175.
Rivalta, E., & Segall, P. (2008). Magma compressibility and the missing source for some dike intrusions. Geophysical Research Letters, 35(4), L04306. https://doi.org/10.1029/2007gl032521
Segall, P., Cervelli, P., Owen, S., Lisowski, M., & Miklius, A. (2001). Constraints on dike propagation from continuous gps measurements. Journal of Geophysical Research, 106(B9), 19301–19317. https://doi.org/10.1029/2001jb000229
Shevchenko, A. V., Dvigalo, V. N., Zorn, E. U., Vassileva, M. S., Massimetti, F., Walter, T. R., et al. (2021). Constructive and destructive processes during the 2018–2019 eruption episode at Shiveluch volcano, Kamchatka, studied from satellite and aerial data. Frontiers in Earth Science, 457, https://doi.org/10.3389/feart.2021.680051
Smittarello, D., Grandin, R., Jaspard, M., Derauw, D., d'Oreye, N., Shreve, T., et al. (2023). Nyiragongo crater collapses measured by multi-sensor SAR amplitude time series [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7755707
Smittarello, D., Smets, B., Barrière, J., Michellier, C., Oth, A., Shreve, T., et al. (2022). Precursor-free eruption triggered by edifice rupture at Nyiragongo volcano. Nature, 609(7925), 83–88. https://doi.org/10.1038/s41586-022-05047-8
Tazieff, H. (1977). An exceptional eruption: Mt. Nyiragongo, January 10th. Bulletin of Volcanology, 40(3), 189–200. https://doi.org/10.1007/bf02596999
Walwer, D., Wauthier, C., Barrière, J., Smittarello, D., Smets, B., & d'Oreye, N. (2023). Modeling the intermittent lava lake drops occurring between 2015 and 2021 at Nyiragongo volcano. Geophysical Research Letters, 50(8), e2022GL102365. https://doi.org/10.1029/2022gl102365
Wauthier, C., Cayol, V., Kervyn, F., & d'Oreye, N. (2012). Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis. Journal of Geophysical Research, 117(B5), B05411. https://doi.org/10.1029/2011jb008257