Algorithms; Humans; Prospective Studies; Tomography, X-Ray Computed/methods; Carcinoma, Non-Small-Cell Lung/diagnostic imaging; Lung Neoplasms/diagnostic imaging; Carcinoma, Non-Small-Cell Lung; Lung Neoplasms; Tomography, X-Ray Computed; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Primakov, Sergey P ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Ibrahim, Abdalla Khalil ; Université de Liège - ULiège > GIGA ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands ; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands ; Department of Nuclear Medicine and Comprehensive diagnostic center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany ; Department of Radiology, Columbia University Irving Medical Center, New York, USA
van Timmeren, Janita E ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands ; Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
Wu, Guangyao; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands ; Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Keek, Simon A; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Beuque, Manon ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Granzier, Renée W Y ; Department of Surgery, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
Lavrova, Elizaveta ; Université de Liège - ULiège > GIGA ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Scrivener, Madeleine; Department of Radiation Oncology, Cliniques universitaires St-Luc, Brussels, Belgium
Sanduleanu, Sebastian; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Kayan, Esma; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Halilaj, Iva ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Lenaers, Anouk ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands ; Department of Surgery, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
Wu, Jianlin; Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
Monshouwer, René ; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
Geets, Xavier; Department of Radiation Oncology, Cliniques universitaires St-Luc, Brussels, Belgium
Gietema, Hester A ; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
Hendriks, Lizza E L ; Department of Pulmonary Diseases, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
Morin, Olivier ; Department of Radiation Oncology, University of California San Francisco, San Francisco, California, CA, USA
Jochems, Arthur; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
Woodruff, Henry C ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands ; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
Lambin, Philippe ; The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands. philippe.lambin@maastrichtuniversity.nl ; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands. philippe.lambin@maastrichtuniversity.nl
S.P.P., M.B., and I.H. acknowledge the financial support of the Marie Skłodowska-Curie grant (PREDICT - ITN - No. 766276). A.I. acknowledges the financial support from the Liege-Maastricht imaging valley grant. P.L. and H.C.W. acknowledge financial support from ERC advanced grant (ERC-ADG-2015 n° 694812 - Hypoximmuno), ERC-2018-PoC: 813200-CL-IO, ERC-2020-PoC: 957565-AUTO.DISTINCT, SME Phase 2 (RAIL n°673780), EUROSTARS (DART, DECIDE, COMPACT-12053), the European Union’s Horizon 2020 research and innovation program under grant agreement: ImmunoSABR n° 733008, FETOPEN- SCANnTREAT n° 899549, CHAIMELEON n° 952172, EuCanImage n° 952103, TRANSCAN Joint Transnational Call 2016 (JTC2016 CLEARLY n° UM 2017-8295), and Interreg V-A Euregio Meuse-Rhine (EURADIOMICS n° EMR4).
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). DOI: 10.3322/caac.21492
Postmus, P. E. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv1–iv21 (2017). DOI: 10.1093/annonc/mdx222
Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012). DOI: 10.1038/nrclinonc.2012.194
Barrett, A., Dobbs, J. & Roques, T. Practical Radiotherapy Planning 4th edn (CRC Press, 2009).
Stroom, J. C. & Heijmen, B. J. M. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother. Oncol. 64, 75–83 (2002). DOI: 10.1016/S0167-8140(02)00140-8
Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009). DOI: 10.1158/1078-0432.CCR-09-1624
Erasmus, J. J. et al. Interobserver and intraobserver variability in measurement of non–small-cell carcinoma lung lesions: implications for assessment of tumor response. J. Clin. Oncol. 21, 2574–2582 (2003). DOI: 10.1200/JCO.2003.01.144
Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012). DOI: 10.1016/j.ejca.2011.11.036
Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017). DOI: 10.1038/nrclinonc.2017.141
Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). DOI: 10.1038/ncomms5006
Kumar, V. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234–1248 (2012). DOI: 10.1016/j.mri.2012.06.010
Ibrahim, A. et al. Radiomics analysis for clinical decision support in nuclear medicine. Semin. Nucl. Med. 10.1053/j.semnuclmed.2019.06.005 (2019).
Kalmet, P. H. S. et al. Deep learning in fracture detection: a narrative review. Acta Orthop. 91, 362 (2020). DOI: 10.1080/17453674.2020.1723292
Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. https://doi.org/10.1007/978-3-319-24574-4_28 (2015).
Szegedy, C. et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/cvpr.2015.7298594 (2015).
Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019). DOI: 10.1038/s41591-019-0447-x
Kamal, U., Rafi, A. M., Hoque, R., Wu, J. & Hasan, M. K. Lung cancer tumor region segmentation using recurrent 3D-DenseUNet. Thoracic Image Analysis. 36–47 https://doi.org/10.1007/978-3-030-62469-9_4 (2020).
Ray, A. Lung Tumor Segmentation via Fully Convolutional Neural Networks. Stanford University, CS 231N, Winter 2016.
Jiang, J. et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Trans. Med. Imaging 38, 134–144 (2019). DOI: 10.1109/TMI.2018.2857800
Mackin, D. et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50, 757–765 (2015). DOI: 10.1097/RLI.0000000000000180
Zhang, F., Wang, Q. & Li, H. Automatic segmentation of the gross target volume in non-small cell lung cancer using a modified version of ResNet. Technol. Cancer Res. Treat. 19, 1533033820947484 (2020).
Revel, M.-P. et al. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 231, 453–458 (2004). DOI: 10.1148/radiol.2312030167
Velazquez, E. R. et al. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen. Radiother. Oncol. 105, 167–173 (2012). DOI: 10.1016/j.radonc.2012.09.023
Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6, e012799 (2016). DOI: 10.1136/bmjopen-2016-012799
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 424–432 (2016).
Norman, B., Pedoia, V. & Majumdar, S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288, 177–185 (2018). DOI: 10.1148/radiol.2018172322
Livne, M. et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front. Neurosci. 13, 97 (2019). DOI: 10.3389/fnins.2019.00097
Hashimoto, F., Kakimoto, A., Ota, N., Ito, S. & Nishizawa, S. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol. Phys. Technol. https://doi.org/10.1007/s12194-019-00512-y (2019).
Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (ELUs). ICLR (2016).
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
Yu, L., Yang, X., Chen, H., Qin, J. & Heng, P.-A. Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence 66–72 (AAAI Press, 2017).
Wu, W. et al. Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization. Med. Phys. 47, 4054–4063 (2020). DOI: 10.1002/mp.14248
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv [cs.LG] (2014).
Dillencourt, M. B., Samet, H. & Tamminen, M. A general approach to connected-component labeling for arbitrary image representations. J. ACM 39, 253–280 (1992). DOI: 10.1145/128749.128750
Nikolov, S. et al. Clinically applicable segmentation of head and neck anatomy for radiotherapy: Deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021).
Vaassen, F. et al. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy. Phys. Imaging Radiat. Oncol. 13, 1–6 (2020). DOI: 10.1016/j.phro.2019.12.001
Wu, J. et al. Radiological tumour classification across imaging modality and histology. Nat. Mach. Intell. 3, 787–798 (2021). DOI: 10.1038/s42256-021-00377-0
Habibzadeh, F. How to report the results of public health research. J. Public Health Emerg. 1, 90–90 (2017). DOI: 10.21037/jphe.2017.12.02
Primakov, S., Lavrova, E., Salahuddin, Z., Woodruff, H. C. & Lambin, P. Precision-medicine-toolbox: an open-source python package for facilitation of quantitative medical imaging and radiomics analysis. Preprint at arXiv [eess.IV] (2022).
Aerts, H. et al. Data from NSCLC-radiomics. Cancer Imaging Archive (2015).
Bakr, S. et al. A radiogenomic dataset of non-small cell lung cancer. Sci. Data 5, 180202 (2018). DOI: 10.1038/sdata.2018.202
Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013). DOI: 10.1007/s10278-013-9622-7
van Baardwijk, A. et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int. J. Radiat. Oncol. Biol. Phys. 68, 771–778 (2007). DOI: 10.1016/j.ijrobp.2006.12.067