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Automated detection and segmentation of
non-small cell lung cancer computed
tomography images
Sergey P. Primakov 1, Abdalla Ibrahim 1,2,3,4,5, Janita E. van Timmeren 1,6, Guangyao Wu1,7,

Simon A. Keek1, Manon Beuque 1, Renée W. Y. Granzier 8, Elizaveta Lavrova 1,9, Madeleine Scrivener10,

Sebastian Sanduleanu1, Esma Kayan1, Iva Halilaj 1, Anouk Lenaers 1,8, Jianlin Wu11, René Monshouwer 12,

Xavier Geets10, Hester A. Gietema 2, Lizza E. L. Hendriks 13, Olivier Morin 14, Arthur Jochems1,

Henry C. Woodruff 1,2 & Philippe Lambin 1,2✉

Detection and segmentation of abnormalities on medical images is highly important for

patient management including diagnosis, radiotherapy, response evaluation, as well as for

quantitative image research. We present a fully automated pipeline for the detection and

volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on

1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by

image slice thickness, tumor size, image interpretation difficulty, and tumor location, we

report an in-silico prospective clinical trial, where we show that the proposed method is faster

and more reproducible compared to the experts. Moreover, we demonstrate that on average,

radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases.

Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST

criteria and measuring the tumor volumes. Segmentations by our method stratified patients

into low and high survival groups with higher significance compared to those methods based

on manual contours.
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Lung cancer is the deadliest of all cancers afflicting both sexes,
accounting for 18.4% of the total cancer deaths worldwide in
2018, almost equal to breast and colon cancers combined1.

Recent advances in treatment (immune checkpoint inhibitors,
tyrosine kinase inhibitors) has significantly improved survival
times for subgroups of patients. However, much work is still to be
done in the field of lung cancer, especially in screening and early
detection. Automated detection and segmentation would imme-
diately impact the clinical workflow in radiotherapy, one of the
most common treatment modalities for lung cancer2. Radio-
therapy uses medical imaging, especially computed tomography
(CT), to obtain accurate tumor localization and electron densities
for the purpose of treatment planning dose calculations3. Accu-
rate segmentation of the tumor and organs at risk are also
essential as errors might lead to over- or under-irradiation of both
the tumor and/or healthy tissue. It has been estimated that a
1 mm shift of the tumor segmentation could affect the radio-
therapeutic dose calculations by up to 15%4,5. Therefore, auto-
mated accurate segmentation can significantly reduce the time
needed by clinicians to carryout treatment planning, and adaptive
re-planning of treatment depending on the changes in the tumor.

Equally important are the lesion and organ at risk segmenta-
tion process for radiation oncologists for radiotherapy planning,
and the measurement of lesions within the Response Evaluation
Criteria in Solid Tumors (RECIST) 1.1 framework for radi-
ologists, both laborious manual routines which impose an
avoidable workload6. Currently, such segmentations and appro-
priate RECIST measurements are performed manually or semi-
automatically, consuming valuable time and resources, as well as
being prone to inter- and intra-observer variability7.

Another field to profit directly from automated detection and
delineation of lesions is radiomics, the high-throughput mining of
quantitative features from medical images and their subsequent
correlation with clinical and/or biological endpoints8,9. Radiomics
has the potential to facilitate personalized medicine via diagnostic
and predictive models based on phenotypic properties of the
region of interest (ROI) being analyzed10. ROI segmentation is
currently considered to be one of the most time-intensive and
laborious steps within the entire radiomics workflow11.

The recent advancement of machine learning techniques,
combined with improvements in the quality and archiving of
medical images, have fueled intensive research in the field of
artificial intelligence (AI) for medical imaging analysis12,13. Deep
learning, a branch of AI-based artificial neural networks, has been
successfully applied on images to solve problems such as classi-
fication or segmentation14,15. Several attempts have been made to
adapt these methods for medical imaging problems, including
tumor detection and segmentation on CT images16–19. A major
hurdle in developing fully automated software that can be applied
to any CT is the heterogeneity of the datasets, especially when
acquired from multiple centers20. CT scans with different
acquisition- or reconstruction parameters present lung structures
differently. The methods described in the current literature
usually lack a CT preprocessing module in the pipeline, and the
problem of data harmonization is left to be solved by a data-
driven approach, requiring large datasets representing all aspects
of this inhomogeneity.

Taking into consideration these clinical and research needs for
lung tumor segmentation, the implementation of automated
detection software that is capable of fast and accurate delineation
of NSCLC on thoracic CT scans is desirable, bordering on
necessity. The applications and benefits include, but are not
limited to: (1) CT-based automated screening of lung cancer;
(2) Retrospective analysis of entire databases of patients who
underwent thoracic CT in daily care for research purposes;
(3) Consistent and reproducible segmentations, which are

important in planning and monitoring (radio)therapy, and in
research; (4) Follow-up of treated primary lung cancer; (5)
Automation and acceleration of certain aspects of the clinical
radiotherapy workflow, making adaptive re-planning more
feasible.

Automated segmentation of NSCLC tumors requires prior
identification of the lesion as NSCLC. Invasive tissue biopsy is
currently the clinical gold standard in identifying NSCLC.
However, an accurate automated segmentation tool requires high
detection accuracy. Therefore, software that can automatically
segment NSCLC tumors could also be used as a detection
method, decreasing the need for invasive biopsies.

In this work, we present a fully automated lung tumor detec-
tion and 3D volumetric segmentation pipeline that is capable of
handling a large variety of CT acquisition and reconstruction
parameters. Furthermore, we externally validate our method on
three datasets, compare the volumetric prognostic factor to an
existing clinical standard, compare the quantitative performance
to a similar published method, and compare the preference score,
speed, and reproducibility of our method to those of experts in a
prospective clinical trial setting.

Results
Overall, 1328 thoracic volumetric CT scans with corresponding
3-dimensional tumor segmentations were used in order to train,
test, and externally validate a fully automated method for detec-
tion and segmentation of NSCLC in standard-of-care images.
Datasets 1–7 were combined and randomly divided into training
and testing datasets with 999 patients and 93 patients, respectively
(see Table 1). Datasets 8–10, comprising 236 patients were used
for external validation of the method. A summary of the data is
provided in Table 1, description of patient characteristics is
provided in Supplementary Table 2.

Tumor detection and segmentation. A three-step workflow was
developed and successfully implemented (Fig. 1): (i) image pre-
processing, a crucial step as datasets collected for this work were
obtained from different scanners with various image acquisition
and reconstruction protocols (Fig. 1 suppl.). The data inhomo-
geneity necessitated the harmonization of CT data in order to
achieve comparable representations of the tumor region, reduce
computational power requirements and image noise, and to
optimize contrast; (ii) lung isolation, which allows the model to
focus on the ROI and the input of the entire CT scans; (iii)
automated tumor detection and segmentation, employing the
convolutional neural network.

The ability of the system to detect tumors was assessed lung-
wise and yielded a sensitivity of 0.97 and specificity of 0.99 in the
external validation dataset and an area under the receiver
operating characteristic curve (AUC) of 0.98. Confusion matrices
for the detection performance can be found in supplementary
materials (Fig. 2 Suppl.). The median contouring performance in
the external validation dataset as assessed by the volumetric Dice
similarity coefficient (DSC) was 0.82, while the 95th percentile of
the Hausdorff distance (H95th) was 9.43 mm. Further metrics,
associated uncertainties, as well as test dataset results are reported
in Table 2. Using dataset 8 we have established the tolerance level
τ for NSCLC manual segmentation variability (τ= 1.18 mm),
allowing the application of the Surface DSC for the NSCLC
segmentation task.

Model performance was also separately assessed in regard to
groupings of image slice-thickness, tumor size, expert-reported
tumor complexity, and tumor location. The sub-cohorts were
analyzed for significant differences in model performance, with
the results reported in Table 3. As some of the tumors had two or
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more unconnected components (satellite lesions, or edges of the
tumor), the Hausdorff metric can yield unreliable distances when
the distance between different volume fragments are calculated.
Therefore, the interquartile range (IQR) for H95th was not
provided. Histograms showing the distributions of detection and
segmentation results are provided in the supplementary materials
(Fig. 2 suppl. and Fig. 3 suppl.).

Box plots showing DSC distributions in the sub cohort's tumor
size and tumor complexity for both test and validation datasets
are shown in Fig. 2. There is a clear trend toward better
performance and less variability for larger and less complex
tumors. More comparisons for differing slice-thickness groups,
complexity classes, tumor location, and tumor sizes performed on
the test and external validation dataset are provided in the
supplementary materials (Figs. 4–7 suppl.).

Examples of the automatically generated segmentations (from
the validation set) in comparison to contours segmented by
experts are shown in Fig. 3.

Comparison to a published method. A previously published
external segmentation model19 was evaluated on dataset 8 and
compared to our model. The performance of the published model
was evaluated using two different inputs: (i) as described in the
original article (using patches of 256 × 256 pixels centered on the
tumor); (ii) using the whole slice. For that dataset, our method
achieved a DSC of 0.87 (IQR= 0.12), whereas the published
method achieved a DSC of 0.83 (IQR= 0.16) when the cropped
tumor regions were used and a DSC of 0.09 (IQR= 0.19) in the
fully automated configuration (no pre-cropping). Figures for
DSC, Ji, and H95th are provided in the supplementary materials
(Fig. 8 suppl.).

Prognostic power of automatic segmentation. Datasets 1 and 6
were used to compare the prognostic power of measurements
extracted from automatically generated and manual contours, as
they had available survival data. We calculated the RECIST lar-
gest diameter and the tumor volume for both the expert and the

Table 2 Overview of quantitative model performance.

Data, # of patients Detection performance Segmentation performance

Lung-wise Specificity Sensitivity DSC (IQR) Ji (IQR) H95th, mm Surf DSC APL, cm

AUC (CI) [τ= 1.18]

(IQR)

Test, 93 0.96 0.97 0.96 0.85 0.74 5 0.75 106
(0.94–0.98) (0.15) (0.22) (0.29) (274)

External validation, 236 0.98 0.99 0.97 0.82 0.70 9.43 0.63 306
(0.97–0.99) (0.17) (0.24) (0.28) (984)

IQR interquartile range, DSC dice similarity coefficient, Ji Jaccard index, H95th 95th percentile, Hausdorff distance.

Table 3 Overview of quantitative model performance with regard to various factors.

Factors Test External Validation

DSC (IQR) Significance DSC (IQR) Significance

Slice thickness, 0–2.5 (mm) 0.86 (0.1) - ns ns 0.90 (0.08) - ns ns
Slice thickness, 2.5–5 (mm) 0.88 (0.17) ns ns - 0.81 (0.18) ** ns -
Slice thickness, >5 (mm) 0.83 (0.1) ns - ns 0.86 (0.13) ** - ns
Complexity label, 0 (No PET needed) 0.88 (0.16) **** - - 0.87 (0.12) **** - -
Complexity label, 1 (PET needed) 0.84 (0.15) **** - - 0.79 (0.19) **** - -
Tumor size, <20 (ml) 0.84 (0.11) - ns ns 0.79 (0.26) - ns ns
Tumor size, 20–150 (ml) 0.86 (0.15) ns ns - 0.82 (0.16) * ns -
Tumor size, >150 (ml) 0.89 (0.12) ns - ns 0.86 (0.15) * - ns
Tumor location, parenchyma 0.82 (0.15) - ns ns 0.83 (0.14) - ns ns ns
Tumor location, mediastinum 0.87 (0.15) ns ns - 0.80 (0.19) **** -
Tumor location, chest-wall involvement 0.88 (0.09) ns - ns 0.89 (0.08) **** - ns

Statistical significance were calculated within the factor groups using a two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction wand referred to as follows: “ns” refers to the p value in the
range: 5.00e-02 < p≤ 1.00e+00.
*refers to the p value in the range: 1.00e-02 < p ≤ 5.00e-02; ** refers to the p value in the range: 1.00e-03 < p≤ 1.00e-02; *** refers to the p value in the range: 1.00e-04 < p ≤ 1.00e-03; **** refers to
the p value in the range: p≤ 1.00e-04.

Fig. 1 Graphic representation of the major steps in the proposed
workflow. Proposed workflow is fully automatic and due to preprocessing
step can handle variability in CT scans.
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automatic segmentation and found that for both metrics the
automatically generated segmentations have more prognostic
power. Statistical differences in the probability of survival for two
groups separated by the median values of these measurements for
automated and manual segmentations are reported in Table 4.
Kaplan–Meier curves for survival split based on the tumor
volume are shown in Fig. 4. KM curves for survival split based on
RECIST score can be found in the supplementary materials
(Fig. 9 suppl.). Additionally, we have also evaluated the difference
using univariate cox analysis to report the cut-off independent
results and looked at the scatter plot for tumor volumes. C-index,
hazard ratio, and p values for a univariate Cox regression are
reported in Table 3 in the supplementary materials. Scatter plots
for tumor volume based on manual vs automated segmentations
can be found in the supplementary materials (Fig. 10 suppl.).

In silico clinical trial. A registered in silico clinical trial was
performed to assess the following endpoints: (1) the time needed
for the processes of manual and automated segmentation; (2)
inter and intra-observer variability; (3) the preference of experts
for manual or automatically generated segmentations.

For the first and second endpoints, seven medical imaging
specialists experienced in NSCLC contouring were asked to
contour the tumors of 25 patients from dataset 3 while being
timed. Our automated method was significantly faster than the
fastest participant (p < 0.0001). The mean time for the automated
method was 2.78 s/patient (SD= 0.44), whereas the mean time

for manual segmentation was 172.19 s/patient (SD= 158.99)
(Fig. 5a).

The median DSC for intra-observer variability among all
experts was 0.88 (IQR= 0.12) whereas automated segmentations
were 100% reproducible. Individual intra-observer variability
scores are reported in Fig. 5b and the JI and H95th are reported in
the supplementary materials (Fig. 11a, b suppl.). The median DSC
for interobserver variability was 0.81 (IQR= 0.24) (see
Fig. 12 suppl.).

The results for assessment of the variability between expert
clinicians and the proposed automatic segmentation method
achieved on the validation dataset 8 are presented in Fig. 6. Our
method achieved an average DSC of 0.82 (IQR= 0.14), whereas
the average DSC of experts inter-variability was 0.84
(IQR= 0.12).

For the third endpoint, we had 40 participants from four
different backgrounds: four health/medicine master students, 17
computer scientists, 12 medical doctors working in the field of
medical imaging, and seven medical specialists (radiologists or
radiation oncologists). In order to quantitatively evaluate the
qualitative preferences of experts regarding automated vs manual
contours, we developed a software tool which allowed experts to
visually compare the segmentation and choose their preferences.

On average, the participants preferred the automatic segmen-
tation above the expert’s contour in 55% (IQR= 12%) of the
cases (Fig. 13a suppl.). Among the groups the qualitative
preference scores were as follows: students= 51% (IQR= 4%)
computer scientists= 52% (IQR= 14%), medical doctors= 56%

a b

Fig. 2 Quantitative performance with regards to tumor size and complexity. Quantitative performance is measured in volumetric dice similarity
coefficient (DSC). Tumor complexity is defined through the necessity of using PET to produce segmentation. Data were presented as box plots with
overlaid swarm plots, where boxes are representing the interquartile range (IQR), extending from Q1 to Q3 and centered on the median value. Upper
whiskers represent the highest data point that is less than Q3+ 1.5 × IQR. Lower whiskers represent the smallest data point that is greater than
Q1− 1.5 × IQR. Data points outside whiskers are considered as outliers. P values were calculated using a two-sided Mann–Whitney–Wilcoxon test with
Bonferroni correction and referred as follows: “ns” on the plot refers to the p value in the range: 5.00e-02 < p≤ 1.00e+00; *refers to the p value in the
range: 1.00e-02 < p≤ 5.00e-02; **refers to the p value in the range: 1.00e-03 < p≤ 1.00e-02; ***refers to the p value in the range: 1.00e-04 < p≤ 1.00e-
03; ****refers to the p value in the range: p≤ 1.00e-04. The exact p values are reported in the order from left to right and from the top to the bottom as they
are displayed on the figures. Calculations provided for: a the test dataset of 93 independent NSCLC CT scans, corresponding p values are: 1.000e+00,
1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, and 1.000e+00; b the external validation dataset of 236 independent NSCLC CT scans, corresponding
p values are: 4.120e-04, 4.022e-02, 8.471e-03, 2.259e-03, 1.662e-05, and 1.117e-01.
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Fig. 3 Visualization of segmentations. Automatically generated tumor segmentations are shown as red lines while manual segmentations are shown in
blue, the green dashed box shows the area to be magnified for better visuals. d–i display magnified area for the (a–c, j–l) respectively. Corresponding 2D
dice similarity coefficient is provided in the bottom left corner on the (d–i).

Table 4 Statistical difference between survival groups separated by the median values of RECIST and tumor volume.

Data, (# of
patients)

RECIST manual
segmentation (p value)

RECIST automatic
segmentation (p value)

Tumor volume manual
segmentation (p value)

Tumor volume automatic
segmentation (p value)

1,419 0.0003 <0.0001 0.0017 <0.0001
6,137 0.0038 0.0031 0.031 0.013

Statistical comparisons were performed using log-rank test.
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(IQR= 12%) and radiologists and radiation oncologists= 59%
(IQR= 13%) (Fig. 13b suppl.).

Discussion
We presented a deep learning-based approach that is able to
achieve state-of-the-art detection and 3D volumetric segmenta-
tion of NSCLC on CT scans. Although several attempts to
develop lung cancer CT detection and segmentation methods

have been previously made, we believe our work is standing out,
especially in its external validation and ability to work on full
thoracic CT scans without further input needed by a human
operator. To improve detection and segmentation performance,
we introduced several complementary steps to the automatic
segmentation pipeline: (1) a harmonization routine for the pre-
processing of CT scans in order to more comprehensively unify
patterns on the images for the models to learn from; (2) a robust
computer vision-based method to isolate the lung area, allowing
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Fig. 4 Prognostic power of NSCLC segmentations measured with tumor volume. Comparison of prognostic power of non-small cell lung cancer (NSCLC)
segmentation is measured through tumor volume. Tumor volume is calculated based on the manual (a, c) and automatically generated contours (b, d).
Kaplan–Meyer curves for survival groups based on tumor volume are displayed with 95% pointwise confidence intervals. P values are calculated using the
log-rank test. Vertical hash marks indicate censored data. a, b KM curves for Maastro-CT-Lung-1 cohort of 419 NSCLC patients. c, d KM curves for
Stanford Lung cohort of 137 NSCLC patients.
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the subsequent deep learning step to focus on the region of
interest; (3) a dynamically changing loss function for the training
procedure, allowing us to control and modify the quality of
produced segmentation; (4) CTs of lung abnormalities other than
NSCLC were included in the training dataset as negative exam-
ples, allowing our method to exclude them from the detection and
segmentation process; (5) lung CT slices without contours were
also used in the training process as negative samples, thereby
increasing the number of unique training samples and decreasing
the false-positive rate of the model; (6) although a 2D DL
architecture was employed, a 3D post-processing routine pro-
duced volumetric segmentation. A prospective, registered in silico
clinical trial showed that the performance of the automatic

segmentation model is acceptable by modern clinical standards
and that participants preferred automatic segmentations more
often than the manual contours. Furthermore, RECIST and
tumor volume based on the automatic contours were able to
generate a more significant split of survival groups than manual
contours.

To set our model in the context of similar published work,
Kamal et al. (2018)17 used a Recurrent 3D-DenseUNet archi-
tecture to segment lung cancers which allowed them to obtain a
DSC of 0.74 on a validation dataset of 40 patients. Jue et al.
(2019)19 evaluated several 2D convolutional neural network
(CNN) architectures such as U-net, Segnet, full-resolution resi-
dual neural network (FRRN), and incremental multiple resolution

a b

Fig. 5 Contouring time and intra-observer variability. Data were presented as box plots with overlaid swarm plots, where boxes are representing the
interquartile range (IQR), extending from Q1 to Q3 and centered on the median value. Upper whiskers represent the highest data point that is less than
Q3+ 1.5 × IQR. Lower whiskers represent the smallest data point that is greater than Q1− 1.5 × IQR. Data points outside whiskers are considered outliers. P
values were calculated using a two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction and referred as follows: ****refers to the p value in the
range: p≤ 1.00e-04. The exact p values are reported in the order from the top to the bottom as they are displayed on the figures. Dr1, Dr2, Dr3, Dr4, Dr5,
Dr6, and Dr7—represent contours made by the medical doctors, DL—represents automatically generated contours. a Distribution of contouring time was
obtained on the 25 NSCLC patients by seven participants and the automated method, corresponding p values are 2.816e-09 and 2.824e-09. b Volumetric
dice similarity coefficient (DSC) representing intra-observer variability, across participants and the automated method, obtained on the 25 NSCLC patients,
corresponding p values are: 1.946e-10 and 1.946e-10.

Fig. 6 Method performance vs interobserver variability. Quantitative segmentation performance and interobserver variability is measured using
volumetric DSC across comparison pairs obtained on 20 NSCLC patients. DR1, DR2, DR3, DR4, and DR5—represent contours made by the doctors (expert
clinicians), DL—represents automatically generated contours. Orange box plots correspond to manual segmentation vs manual segmentation comparison
and display interobserver variability. Blue box plots correspond to the proposed method vs manual segmentations comparisons and display the proposed
method performance. Data were presented as box plots with overlaid swarm plots, where boxes are representing the interquartile range (IQR), extending
from Q1 to Q3 and centered on the median value. Upper whiskers represent the highest data point that is less than Q3+ 1.5 × IQR. Lower whiskers
represent the smallest data point that is greater than Q1− 1.5 × IQR. Data points outside whiskers are considered outliers.
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residual network (MRRN) to segment patches of 160 × 160 pixels
centered around the tumor, achieving DSC of 0.68 on the external
validation dataset. Zhang et al. (2020)21 used a modified version
of ResNet to automatically segment GTV and achieved an aver-
aged dice similarity coefficient (DSC) of 0.73 on the test set,
lacking however external validation of the model. Ardila et al.
(2019)16 developed a deep learning-based software, which can
detect lung cancer on low dose CTs with an AUC of 94.4%. In our
study we were not able to evaluate a patient based AUC for lung
cancer detection since all patients had cancer, instead, we have
demonstrated that our model was able to detect lungs containing
cancer on low dose CTs with a robust AUC of 0.96 in the test and
0.98 in the external validation datasets. Additionally, we evaluated
the performance of a published 3D U-net-based approach on our
validation dataset, where our model outperformed the published
method.

The state-of-the-art detection accuracy and the fact that it
accepts any CT containing the lungs as input means the software
can be used as a method for screening and detection of lung
cancer. This is further corroborated by the fact that CT scans
acquired using different parameters can be directly put in, making
our method multi-vendor and multi-reconstruction compliant to
a certain degree. The inclusion of cases that were hard to segment
without a co-registered PET scan allows the deep learning net-
works to learn how to differentiate tumors from other lung
abnormalities such as atelectasis and tumors with mediastinal
involvement, which in conjunction with the accurate segmenta-
tion of the 3D tumor volume means it can be used clinically in
radiotherapy settings or for big data radiomics (and potentially
other) research. The robust automatic volumetric and RECIST
measurements will subsequently have a positive impact on sample
size calculations for clinical trials22.

Although we attempted to address the flaws and limitations of
previous research while developing our software, there were
limitations to our work. The ground truth segmentations were
originally made on primary NSCLC. Therefore, although the
software has a high detection accuracy, it is hypothetically limited
to the detection and segmentation of primary NSCLC tumors.
Moreover, by considering medical expert contours as the ground
truth and taking into account the high interobserver variability of
the contouring process23, the deep learning network was also
learning inaccuracies, such as contoured air (that certainly is not
cancerous). However, this effect can be alleviated by increasing
the training dataset size.

In future work we will utilize the evaluated image factors (slice-
thickness, complexity class, predicted tumor size, and tumor
location) in order to give a confidence score to each segmentation
produced, providing added information to the user about which
segmentations might need more attention. Additionally, we think
it would be interesting to evaluate our method in a prospective
clinical trial setting for tumor response to treatment evaluation
utilizing the automatic volumetric RECIST measurement. Since
our method was trained only on the planning/pretreatment CT
scans, post-treatment changes in the tumor and lung structures
may impose extra challenges on our automated segmentation
approach.

Further tuning of the model on NSCLC CT scans, and other
independent NSCLC datasets can improve the performance of the
software, and advance it towards clinical implementation.

The ability of the software developed in this study to handle
full thoracic CT scans with different acquisition and reconstruc-
tion parameters and without further human intervention repre-
sents the pillar for its clinical transition. Clinical application of
this software following prospective validation can have a positive
impact on the management of lung cancer patients, as it will
improve the detection accuracy, and provide a fast, consistent,

and reliable volumetric segmentation for treatment (evaluation)
purposes. Furthermore, the use of the software in large radiomics
studies will allow automation and will reduce the time needed to
complete the studies in a robust manner, as it will significantly
decrease the time needed for the rate-limiting part of the work-
flow—tumor segmentation.

Methods
Description of data. The pretreatment CT scans of 1414 NSCLC patients were
retrospectively collected and anonymized by each center and approved by the
respective institutional review boards. A description of the data were provided in
Table 1, and a description of patient characteristics is provided in Supplementary
Table 2.

In this study, which followed the Standards for Reporting of Diagnostic
Accuracy Studies statement24, the requirement for written informed consent was
waived. The institutional review board of Maastricht University Medical Center has
waived the need for informed consent since the data were anonymized and
retrospectively collected with no intervention planned for participants based on the
study, and no compensations were provided. The images in dataset 8 were
segmented by five radiation oncologists, which allowed us to compare the
performance of the deep learning segmentation model to multiple manual
delineations. All other segmentations were performed by a radiologist or radiation-
oncologist at the center where the diagnosis was made and checked by at least one
segmentation expert at our site. The expert segmentations were considered the
ground truth for training and further evaluations. Eighty-six patients from various
datasets were excluded due to missing tumor contours and the lack of a PET scan
to perform the segmentations according to a clinical protocol. Survival data and CT
scans for datasets 1 and 6 were collected from the open sources.

Image preprocessing. Data inhomogeneity necessitated the harmonization of CT
data in order to achieve comparable representations of the tumor region. Fur-
thermore, several steps were introduced to reduce computational power require-
ments and image noise and to optimize the contrast. The first step is the extraction
of a 3D array with voxel intensity values represented as Hounsfield Units (HU)
from Digital Imaging and Communications in Medicine (DICOM) data. Next, the
image contrast is enhanced using a lung window setting (window width (WW) of
1500 HU and window level (WL) of −600 HU) to highlight lung structures. All
voxel intensities outside of the upper and lower limits are assigned the value of the
closest limit. Following this, nearest-neighbor interpolation is applied to obtain
isotropic spatial resolution in the axial plane so that each pixel has a size of
1 × 1 mm2. After spatial normalization, an image with standard bone window
settings (WW: 1800, WL: 400) is saved, as it is used as an input in the lung isolation
step of the workflow. In order to smooth the effect of different reconstruction
methods on the image and to reduce the computational burden, intensity values are
aggregated into bins of equal width. This also allows optimization of storage and
image processing by packing the images into a much shorter 8-bit integer range
and by filtering high-frequency noise. Hereafter, the image is cropped or padded
with air intensity values to arrive at a resolution of 512 × 512 pixels, which is
chosen as input for the selected deep learning architecture. All image processing
and deep learning modeling steps were performed in Python 3.7 with the libraries
and respective versions detailed in supplementary materials Table suppl. 1.

Lung region isolation. A robust algorithm for the isolation of the lung region was
developed in order to focus on the ROI and allow for the use of whole-body CT
scans as input. First, the CT couch is detected and removed from the image
volume. Air-filled connected volumes are detected and region growing and mor-
phological operations are applied in order to remove small vessels and to connect
adjacent regions, resulting in a 3D binary lung mask. The spine axis is identified
and the lung mask is halved and symmetrically flipped about the sagittal plane,
keeping the union of the flipped and the original lung masks. By doing so, the
algorithm is optimized for handling lung abnormalities such as atelectasis, pul-
monary infiltration, consolidation, and fibrosis. To accurately identify the spine
axis, a further algorithm was developed which identifies the center of the spine
using the stored preprocessed image with bone window settings as described in the
previous section (Fig. 14a suppl.). A “bone image” slice containing the lung is
projected onto the coronal plane and filtered with a seventh-order moving average
filter (Fig. 14b, c suppl.). This is repeated for the first five slices in which the lung
mask is present in order to find a starting point for the center spine position S0.
The axis of the spine is positioned normally to this point (Fig. 14d suppl.).

S0 ¼
1
n
∑
n

z¼0
Pz ð1Þ

Where P is a central spine point for the current axial slice, n is the number of
slices (=5).

Due to irregularities in patient positioning and anatomy, the central spine
position St is recalculated slice-wise by using exponential smoothing:

St ¼ / � xt þ 1� /ð Þ � St�1 ð2Þ
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Where x is a central spine point based on the filtered signal for the current axial
slice, and α is the weighting coefficient (=0.3).

This method of flipping the lung mask allows for the inclusion of regions that
contain large-sized abnormalities, such as lung collapse, which obscure parts of the
lung, whereas commonly used methods exclude those regions (Fig. 14f, g suppl.).

A morphological dilation with the circle kernel (r=−5) is applied to the
resulting lung mask in order to have a margin around the lung area. The final
binary lung mask is used to isolate the lung region within the original image by
setting all the voxel values outside the mask to the normalized air value.

Tumor detection and segmentation. The widely used 2D U-net convolutional
neural network (CNN) was employed for slice-wise tumor segmentation25–28. The
axial projection was used to train the network due to the higher resolution of image
representation in this plane. To improve segmentation performance, several
changes were made to the original CNN architecture. First, rectified linear unit
(ReLU) activations were replaced with Exponential Linear Unit (ELU) in order to
alleviate the gradient vanishing problem and kick-start the training process29.
Second, dropout layers with the dropout rate (p= 0.5) were introduced prior to the
two last layers of the U-net encoder to prevent overfitting30.

A 2D CNN architecture was chosen for several reasons: (1) by using a 2D input
the training dataset can be increased by more than a factor of 60, as overall more
than 60,000 unique slices were available in the training set; (2) due to calculation
costs, most present deep 3D architectures could analyze only a subvolume of the
medical image31,32, or they require a dimensionality reduction using interpolation
or other image processing methods. 2D architectures do not have this problem and
can process CT scans in the original resolution; (3) our main goal was to develop a
pipeline that can be used in a clinical setting, and a 2D architecture allows for
significantly lower requirements for executing PC. Our software does not require
GPUs and can run on a regular laptop (Intel Core i5, 2.5 GHz, 8 GB RAM).

In order to increase the robustness of the system to a wide range of imaging
parameters, the training dataset was expanded using augmentation techniques with
the following parameters: random rotation around the image center pixel in a
range of 0–25 degrees with a probability of 60%, random horizontal and vertical
shifts of the image in the range of 12% of image shape with a probability of 25%,
random zooming of the image with a maximum of 3% of the image shape with a
probability of 10%.

The loss function was calculated by combining the Dice similarity coefficient
(DSC) loss and the binary cross-entropy, and privilege was given to the DSC loss
during the first 50 epochs. The privilege was defined by the coefficients before the
DSC and cross-entropy terms in the loss function. By adding the binary cross-
entropy component to the loss function, negative samples (slices without contour)
could also contribute to the training.

The model was trained for 300 epochs using eight NVIDIA GTX 1080 Ti GPUs.
The Adam algorithm was used for the stochastic optimization of the loss
function33. The cosine annealing scheduler was used to adjust the learning rate
during the training process. A checkpoint function tracking the DSC on the test
dataset was used to keep the best weights.

Predicted 2D binary masks are stacked into a 3D volume and connected
component extraction is applied as a post-processing step, whereby only spatially
connected mask regions are extracted34. The connected region containing the most
voxels is defined as the primary gross tumor target volume (GTV-1) for
quantitative assessment. The final mask is resampled to the original image shape
using cv2.INTER_BITS interpolation.

Evaluation metrics. In order to evaluate tumor detection performance, we gen-
erated lung-based labels, where lungs containing a tumor segmentation were
assigned a positive label and lungs without were labeled negative. For cases where a
tumor was present in both lungs of a patient, both were labeled positive. The ability
of the system to detect tumors was assessed by calculating the area under the
receiver operating characteristic curve (ROC AUC) and generating a confusion
matrix.

Automatically generated binary masks were resampled to the original image
resolution using cv2.INTER_BITS interpolation before comparing with manual
segmentations. The contouring performance of the proposed pipeline, as well as the
doctor's variability, were assessed by using the volumetric Dice similarity coefficient
(DSC), Jaccard index (Ji), and 95th percentile Hausdorff distance (H95th).
Additionally, we have evaluated quantitative contouring performance using Surface
DSC and Added Path Length (APL).

The DSC is a measure of overlap between two volumes and was computed as:

DSCðA;BÞ ¼ 2 � jA \ Bj
jAj þ jBj ¼ 2 � TP

2 � TPþ FPþ FN
ð3Þ

Jaccard index, used for gauging the similarity between two volumes, was
computed as:

Ji A;Bð Þ ¼ A \ Bj j
A∪Bj j ¼

TP
TPþ FPþ FN

ð4Þ

where A and B are the sets of voxels corresponding to the ground truth and the
automatic segmentation, respectively. TP is the number of true positive voxels, FP

is the number of false-positive voxels and FN is the number of false-negative
voxels.

To evaluate the maximum deviation between the automatically segmented
surface boundary and the ground truth surface boundary, the 95th percentile of
Hausdorff distance (H95th) was used. Hausdorff distance (H) is defined as:

HðA;BÞ ¼ maxfsup inf dða; bÞ; sup inf dðb; aÞg
a2Sa b2Sb b2Sb a2Sa

ð5Þ

where a and b are the points on the voxel sets A and B, which represent the ground
truth and the automatic segmentation, respectively. Sa and Sb are the surfaces of
A and B.

Surface DSC at tolerance τ was computed as:

SurfDSCðA;B; τÞ ¼ jSa
T

β τð Þ
b j þ jSb

T
βðτÞa j

jSaj þ jSbj
ð6Þ

Where Sa and Sb are the surfaces of A and B, βτa and βτb are the border regions of
A and B at a given tolerance τ, where τ is a maximum deviation from the ground
truth contour which would not be penalized35. Tolerance τ for the NSCLC
segmentation task have been evaluated on dataset 8 using segmentations of five
experts.

APL was defined as follows:

APL A;B;PSxy
� �

¼ 10 � PSxy ∑B� A
\

B ð7Þ

Where A and B are the voxel sets of automatic and manual segmentation
respectively and PSxy is the pixel spacing in the axial plane in mm36.

In addition to the model performance evaluation on the test and validation
datasets, the variability between expert clinicians was assessed and displayed
against the performance of our method by comparing the volumetric DSC among
all possible comparison pairs, i.e., experts were compared with each other as well as
with the proposed method.

To better gauge the performance of our model under varying circumstances, it
was evaluated with regard to slice-thickness, tumor complexity, tumor size, and
tumor location. Tumor size subgroups were chosen based on the overall tumor size
distribution in the training set. Furthermore, expert subjective tumor complexity
labels were defined. To describe the complexity of the tumor, two medical doctors
were asked to label the test and validation dataset as follows: for tumors where
segmentation cannot be performed without a corresponding PET scan the labels
were set to “1”, and “0” otherwise. In case of disagreement, the label “1” was
chosen. Additionally, one medical doctor have also labeled the tumor locations on
the test and validation datasets, where tumor locations were defined as follows:
lung parenchyma, mediastinum, and chest-wall involvement. Tumor locations
were selected based on the discussion with clinical experts and existing published
research37.

Statistical analysis. For all non-normally distributed scores the median and
interquartile range (IQR) were reported, as well as the frequency histograms38.
Statistical significance was assessed using a two-sided Mann–Whitney–Wilcoxon
test with Bonferroni correction. Survival evaluation was done in R (version 4.0.2)
using survival (version 3.1–12) and survminer (version 0.4.7) packages. To estimate
the difference between survival groups a log-rank test was applied. High and low
survival groups were separated by the median tumor volume or median RECIST
measurement respectively. Random sampling with a replacement bootstrapping
strategy was used to compute confidence intervals for AUC values.

An in silico clinical trial. This trial was registered at clinicaltrials.gov
(NCT04164186). For the first and second endpoints (the time needed for the
processes of manual and automated segmentation, and inter and intra-observer
variability), participants used a state-of the-art commercial software (MIM version
7.0.4) to produce the segmentations. In order to make the conditions of the trial
close to the real clinical practice, experts had CT and PET scans available for each
patient and they were able to use a semi-automated segmentation solution pro-
vided by MIM, while the proposed method generated the segmentation using only
CT scans.

For the third endpoint (preference of experts for manual or automatically
generated segmentations), a software tool was developed in-house. The tool has
two interactive screens with the first screen showing the description of the
experiment and a small questionnaire. In order to analyze preferences at different
levels of expertize, the participants were asked to specify their training (e.g.,
radiologist, radiation-oncologist, medical doctor). The second screen displays
comparisons between pairs of segmented axial CT slices (automatic vs. expert) with
randomized screen positions, blinded to the participant. For each comparison pair,
the participants were asked to select the more accurate contour. Finally, a table was
generated containing the choices made. Screenshots of this tool are provided in
supplementary materials (Figs. 15, 16 suppl.).

The software tool presents scans and contours from the external validation
datasets 8. It randomly selects 100 pairs of contoured CT slices, where the DSC
between the contours was higher than 0.7. During the assessment, participants
were able to adjust the image contrast by changing window settings (WW and WL)
and leaving comments.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30841-3

10 NATURE COMMUNICATIONS |         (2022) 13:3423 | https://doi.org/10.1038/s41467-022-30841-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The preference of the experts was evaluated using the qualitative preference
score, defined as:

PS ¼ nm
no

´ 100%; ð8Þ

where nm is the number of times where preference was given to the proposed
method,

no is a number of cases in total.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets 1, 6, 7, and 8 used in this study are available open-source and can be
accessed through the corresponding sources: dataset 1—https://wiki.
cancerimagingarchive.net/display/Public/NSCLC-Radiomics; dataset 6—https://wiki.
cancerimagingarchive.net/display/Public/NSCLC+
Radiogenomics#28672347a99a795ff4454409862a398ffc076b98; dataset 7—https://wiki.
cancerimagingarchive.net/display/Public/NSCLC-Radiomics-Genomics#
16056856db10d39adf704eefa 53e41edcf5ef41c; dataset 8— https://wiki.
cancerimagingarchive.net/display/Public/NSCLC-Radiomics-Interobserver1#
52756590171ba531fc374829b21d3647e95f532c. The processed datasets 2, 3, 4, 5, 9, and
10 are available under restricted access as they were provided under Data Transfer
Agreements from corresponding centers, and are not yet public due to data privacy laws,
access can be obtained through the corresponding author upon request subject to ethical
review. The approximate time for processing the data request is 1 month. The raw
datasets 2, 3, 4, 5, 9, and 10 are protected and are not available due to data privacy laws.
The minimum dataset is available on the GitHub repository of this project: https://
github.com/primakov/DuneAI-Automated-detection-and-segmentation-of-non-small-
cell-lung-cancer-computed-tomography-images/tree/main/Software%20for%
20qualitative%20assesment/test_data. Philippe Lambin should be addressed for
correspondence and material requests (email: philippe.lambin@maastrichtuniversity.nl)
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