[en] Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.
Disciplines :
Genetics & genetic processes
Author, co-author :
Lee, Young Lim ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) ; Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
Bouwman, Aniek C; Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
Harland, Chad ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > GIGA-R : Génomique animale ; Livestock Improvement Corporation, Hamilton 3240, New Zealand
Bosse, Mirte; Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
Costa Monteiro Moreira, Gabriel ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Veerkamp, Roel F; Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
Mullaart, Erik; CRV B.V., 6842 BD Arnhem, The Netherlands
CAMBISANO, Nadine ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Groenen, Martien A M; Wageningen University and Research, Animal Breeding, and Genomics, 6708 WG Wageningen, The Netherlands
Abel HJ, Larson DE, Regier AA, Chiang C, Das I, Kanchi KL, Layer RM, Neale BM, Salerno WJ, Reeves C, et al. 2020. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583: 83–89. doi:10.1038/s41586-020-2371-0
Adewoye AB, Lindsay SJ, Dubrova YE, Hurles ME. 2015. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat Commun 6: 6684. doi:10.1038/ncomms7684
Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, Feusier J, Gupta M, Nicholas TJ, Baird L, Devlin B, et al. 2021. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am J Hum Genet 108: 597–607. doi:10.1016/j.ajhg .2021.02.012
Bergeron LA, Besenbacher S, Turner T, Versoza CJ, Wang RJ, Price AL, Armstrong E, Riera M, Carlson J, Chen H, et al. 2022. The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. eLife 11: e73577. doi:10.7554/eLife.73577
Besenbacher S, Hvilsom C, Marques-Bonet T, Mailund T, Schierup MH. 2019. Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat Ecol Evol 3: 286–292. doi:10.1038/s41559-018-0778-x
Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, Barrera DJ, Lin GN, Malhotra D, Watts AC, et al. 2016. Frequency and complexity of de novo structural mutation in autism. Am J Hum Genet 98: 667–679. doi:10.1016/j.ajhg.2016.02.018
Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS, Hong O, Chapman TR, Tan S, Tandon P, et al. 2018. Paternally inherited cisregulatory structural variants are associated with autism. Science 360: 327–331. doi:10.1126/science.aan2261
Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, Khera A V, Lowther C, Gauthier LD, Wang H, et al. 2020. A structural variation reference for medical and population genetics. Nature 581: 444–451. doi:10.1038/s41586-020-2287-8
Duranthon V, Chavatte-Palmer P. 2018. Long term effects of ART: what do animals tell us? Mol Reprod Dev 85: 348–368. doi:10.1002/mrd.22970
Esteki MZ, Viltrop T, Tšuiko O, Tiirats A, Koel M, Nõukas M, Žilina O, Teearu K, Marjonen H, Kahila H, et al. 2019. In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat Med 25: 1699–1705. doi:10.1038/s41591-019-0620-2
Feng C, Pettersson M, Lamichhaney S, Rubin CJ, Rafati N, Casini M, Folkvord A, Andersson L. 2017. Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. eLife 6: e23907. doi:10.7554/eLife.23907
Gao Z, Wyman MJ, Sella G, Przeworski M. 2016. Interpreting the dependence of mutation rates on age and time. PLoS Biol 14: e1002355. doi:10.1371/journal.pbio.1002355
Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, Jorde LB, Amster G, Przeworski M. 2019. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc Natl Acad Sci USA 116: 9491–9500. doi:10.1073/pnas.1901259116
Goldmann JM, Wong WSW, Pinelli M, Farrah T, Bodian D, Stittrich AB, Glusman G, Vissers LELM, Hoischen A, Roach JC, et al. 2016. Parent-of-origin-specific signatures of de novo mutations. Nat Genet 48: 935–939. doi:10.1038/ng.3597
Goldmann JM, Seplyarskiy VB, Wong WSW, Vilboux T, Neerincx PB, Bodian DL, Solomon BD, Veltman JA, Deeken JF. 2018. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat Genet 50: 487–492. doi:10.1038/s41588-018-0071-6
Grégoire MC, Leduc F, Morin MH, Cavé T, Arguin M, Richter M, Jacques PÉ, Boissonneault G. 2018. The DNA double-strand “breakome” of mouse spermatids. Cell Mol Life Sci 75: 2859–2872. doi:10.1007/s00018-018-2769-0
Harland C, Charlier C, Karim L, Cambisano N, Deckers M, Mni M, Mullaart E, Coppieters W, Georges M. 2016. Frequency of mosaicism points towards mutation-prone early cleavage cell divisions in cattle. bioRxiv doi:10.1101/079863
Harris K. 2015. Evidence for recent, population-specific evolution of the human mutation rate. Proc Natl Acad Sci USA 112: 3439–3444. doi:10 .1073/pnas.1418652112
Harris K, Pritchard JK. 2017. Rapid evolution of the human mutation spectrum. eLife 6: e24284. doi:10.7554/eLife.24284
Hastings PJ, Ira G, Lupski JR. 2009a. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327. doi:10.1371/journal.pgen.1000327
Hastings PJ, Lupski JR, Rosenberg SM, Ira G. 2009b. Mechanisms of change in gene copy number. Nat Rev Genet 10: 551–564. doi:10.1038/nrg2593
Holtgrewe M, Knaus A, Hildebrand G, Pantel JT, de los Santos MR, Neveling K, Goldmann J, Schubach M, Jäger M, Coutelier M, et al. 2018. Multisite de novo mutations in human offspring after paternal exposure to ionizing radiation. Sci Rep 8: 14611. doi:10.1038/s41598-018-33066-x
Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KHA. 1998. Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 95: 1136–1141. doi:10.1073/pnas.95 .3.1136
Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, Coorens T, Prigmore E, Short P, Gallone G, McRae J, et al. 2022. Genetic and chemotherapeutic influences on germline hypermutation. Nature 605: 503–508. doi:10 .1038/s41586-022-04712-2
Kloosterman WP, Francioli LC, Hormozdiari F, Marschall T, Hehir-Kwa JY, Abdellaoui A, Lameijer EW, Moed MH, Koval V, Renkens I, et al. 2015. Characteristics of de novo structural changes in the human genome. Genome Res 25: 792–801. doi:10.1101/gr.185041.114
Kondrashov FA, Kondrashov AS. 2010. Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 365: 1169–1176. doi:10.1098/rstb.2009.0286
Ladstätter S, Tachibana-Konwalski K. 2016. A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167: 1774–1787.e13. doi:10.1016/j.cell.2016.11.009
Larson DE, Abel HJ, Chiang C, Badve A, Das I, Eldred JM, Layer RM, Hall IM. 2019. svtools: population-scale analysis of structural variation. Bioinformatics 35: 4782–4787. doi:10.1093/bioinformatics/btz492
Layer RM, Chiang C, Quinlan AR, Hall IM. 2014. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15: R84. doi:10.1186/gb-2014-15-6-r84
Lee JA, Carvalho CMB, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235–1247. doi:10.1016/j.cell.2007.11.037
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN].
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/bioinfor matics/btp324
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17: 704–714. doi:10.1038/nrg.2016.104
Mathieson I, Reich D. 2017. Differences in the rare variant spectrum among human populations. PLoS Genet 13: e1006581. doi:10.1371/journal .pgen.1006581
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi:10.1101/gr .107524.110
Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, Jian M, Liu G, Greer D, Bhandari A, et al. 2012. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151: 1431–1442. doi:10.1016/j.cell.2012.11.019
Moorjani P, Gao Z, Przeworski M. 2016. Human germline mutation and the erratic evolutionary clock. PLoS Biol 14: e2000744. doi:10.1371/journal .pbio.2000744
Narasimhan VM, Rahbari R, Scally A, Wuster A, Mason D, Xue Y, Wright J, Trembath RC, Maher ER, Van Heel DA, et al. 2017. Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. Nat Commun 8: 303. doi:10 .1038/s41467-017-00323-y
Palamara PF, Francioli LC, Wilton PR, Genovese G, Gusev A, Finucane HK, Sankararaman S, Sunyaev SR, De Bakker PIW, Wakeley J, et al. 2015. Leveraging distant relatedness to quantify human mutation and gene-conversion rates. Am J Hum Genet 97: 775–789. doi:10.1016/j.ajhg .2015.10.006
Park S, Mali NM, Kim R, Choi JW, Lee J, Lim J, Park JM, Park JW, Kim D, Kim T, et al. 2021. Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature 597: 393–397. doi:10.1038/s41586-021-03786-8
Pedersen BS, Quinlan AR. 2019. Duphold: scalable, depth-based annotation and curation of high-confidence structural variant calls. GigaScience 8: giz040. doi:10.1093/gigascience/giz040
Reijns MAM, Kemp H, Ding J, De Procé SM, Jackson AP, Taylor MS. 2015. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518: 502–506. doi:10.1038/nature14183
Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, Jorde LB, Quinlan AR. 2019. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8: e46922. doi:10.7554/eLife.46922
Ségurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation rate variation in the human germline. Annu Rev Genomics Hum Genet 15: 47–70. doi:10.1146/annurev-genom-031714-125740
Seplyarskiy VB, Soldatov RA, Koch E, McGinty RJ, Goldmann JM, Hernandez RD, Barnes K, Correa A, Burchard EG, Ellinor PT, et al. 2021. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science 373: 1030–1035. doi:10 .1126/science.aba7408
Smits RM, Xavier MJ, Oud MS, Astuti GDN, Meijerink AM, de Vries PF, Holt GS, Alobaidi BKS, Batty LE, Khazeeva G, et al. 2022. de novo mutations in children born after medical assisted reproduction. Hum Reprod 37: 1360–1369. doi:10.1093/humrep/deac068
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MHY, et al. 2015. An integrated map of structural variation in 2504 human genomes. Nature 526: 75–81. doi:10 .1038/nature15394
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. 2015. Sambamba: fast processing of NGS alignment formats. Bioinfo 31: 2032–2034. doi:10 .1093/bioinformatics/btv098
Tšuiko O, Catteeuw M, Esteki MZ, Destouni A, Pascottini OB, Besenfelder U, Havlicek V, Smits K, Kurg A, Salumets A, et al. 2017. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum Reprod 32: 2348–2357. doi:10.1093/ humrep/dex286
Van der Auwera G, O’Connor B. 2020. Genomics in the cloud: using Docker, GATK, and WDL in Terra, 1st ed. O’Reilly Media. https://www.oreilly.com/library/view/genomics-in-the/9781491975183/.
Wang C, Lv H, Ling X, Li H, Diao F, Dai J. 2021. Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res 148: 148–162. doi:10.1038/s41422-021-00521-w
Werling DM, Brand H, An J, Stone MR, Zhu L, Glessner JT, Collins RL, Dong S, Layer RM, Markenscoff-papadimitriou E, et al. 2018. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 50: 727–736. doi:10.1038/s41588-018-0107-y
Wong WSW, Solomon BD, Bodian DL, Kothiyal P, Eley G, Huddleston KC, Baker R, Thach DC, Iyer RK, Vockley JG, et al. 2016. New observations on maternal age effect on germline de novo mutations. Nat Commun 7: 10486. doi:10.1038/ncomms10486
Wu FL, Strand AI, Cox LA, Id CO, Wall JD, Moorjani P, Id MP. 2020. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol 18: e3000838. doi:10.1371/journal .pbio.3000838