Biosourced compressed earth brick; Hollow cement block; Building performance simulation; Life cycle assessment
Abstract :
[en] A novel low-cost earthen construction system integrating biosourced aggregates is proposed for houses’ erection of low-income households. This study is based on in-situ measurements on two representative test cells constructed in Douala, with a typical hot and humid climate. One of these buildings is made with a hollow cement block as a reference, and the other with biosourced earth bricks modified with Cocos nucifera and Canarium schweinfurthii aggregates. Dynamic thermal simulations of the two test cells were performed using the EnergyPlus building performance simulation program. The results are based on measuring air temperature and humidity, and the simulation leads to defining the discomfort hours and the annual energy consumption. The adaptive ASHRAE 55 thermal comfort model was used to evaluate the comfort conditions. The results show that air conditioning systems provide the best comfort systems with minimums of about 95% for plastered and unplastered wall construction systems. Biosourced compressed earth brick constructions offered the best thermal performance with comfort ranges of around 96% and 44% for air conditioning and natural ventilation, respectively. In terms of energy consumed, there was a gain of about 100 kWh over the year. Energy consumption is lower in the biosourced compressed earth brick building than in the hollowed cement block building: this one offered the lowest comfort range of about 40% in natural ventilation. The construction provisions were considered for the life cycle assessment, and two scenarios describing the origin of the cement raw materials were considered. It can be seen that cement accounts for more than 95% of the impacts for both construction systems, as well as for the scenarios of its origin. In all situations, the hollowed cement block construction presented the highest impact on the global warming potential: 66 KgCO2eq and 89 KgCO2eq, respectively, without plaster and with plaster. It can also be seen that the plastered layer had a carbon footprint (in terms of Green House Gas Emissions (GHG emissions)) of almost 40% on the overall functional unit. Canarium Schweinfurthii and Cocos Nucifera materials accounted for only 1% of the overall impact.
Courard, Luc ; Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil ; Université de Liège - ULiège > Urban and Environmental Engineering
Tatchum Defo, Ulrich; Université de Douala
Ndapeu, Dieunedort; Université de Dschang
Njeugna, Ebénézer; Université de Douala
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments ; Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Evaluating Thermal Performance and Environmental Impact of Compressed Earth Blocks with Cocos and Canarium Aggregates: A Study in Douala, Cameroon
Publication date :
2023
Journal title :
International Journal of Engineering Research in Africa
ISSN :
1663-3571
eISSN :
1663-4144
Publisher :
Trans Tech Publications Ltd (Scientific.net), Seestrasse 24c, CH-8806 Baech, Switzerland
GIEC, Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Sous la direction de l’équipe de rédaction principale ], vol. 133. Génève: GIEC, 2014.
un.org, “Objectif 11: Faire en sorte que les villes et les établissements humains soient ouverts à tous, sûrs, résilients et durables – Développement durable,” 2021. https://www.un.org/sustainabledevelopment/fr/cities/(consulté le 22-04-2021) (accessed Apr. 22, 2021).
P. Antoine, “La Crise Et L’Accès Au Logement Dans Les Villes Africaines,” in Crise et population en Afrique, Paris: CEPED, 1980, p. P 273-290.
J. Dumas, "Cameroun," Habitat-worldmap, Sep. 2019.
M. Baglou, P. Ghoddousi and M. Saeedi, “Evaluation of Building Materials Based on Sustainable Development Indicators,” J Sustain Dev, vol. 10, no. 4, p. 143, 2017, doi: 10.5539/jsd.v10n4p143.
P. Ginies, “Édito,” in Écomatériaux de Construction: Pilier de la croissance verte en Afrique, I. I. d’Ingénieurie de l’Eau et de l’Environnement (2iE), Ed., Éditions Sud Sciences et Technologies, 2013, p. 180.
J. K. A. Ouédraogo, “Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux,” Université de Toulouse 3, 2019.
SPW, Isolation thermique par l ’ intérieur des murs existants en briques pleines. Liège: Service publique de la Wallonie (SPW), 2010.
J.-L. Chevalier and A. Lebert, L’analyse du cycle de vie dans le bâtiment. Paris: CSTB, 2018.
B. Taallah, A. Guettala, S. Guettala and A. Kriker, "Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers," Constr Build Mater, vol. 59, pp. 161–168, 2014, doi: 10.1016/j.conbuildmat.2014.02.058.
D. Abessolo, A. B. Biwole, D. Fokwa, B. M. Ganou Koungang and B. B. Yembe, "Physical, Mechanical and Hygroscopic Behaviour of Compressed Earth Blocks Stabilized with Cement and Reinforced with Bamboo Fibres," International Journal of Engineering Research in Africa, vol. 59, pp. 29–41, 2022, doi: 10.4028/p-spbskv.
CRAterre, H. Houben and H. Guillaud, Traité de construction en terre, 3rd ed. Paris: Éd. Parenthèses, 2006.
M. Moevus, R. Anger and L. Fontaine, "Hygro-Thermo-Mechanical Properties of Earthen Materials for Construction: a Literature Review," in Terra 2012, XIth International Conference on the Study and Conservation of Earthen Architectural Heritage, Lima, 2012, pp. 1–10.
S. Tido Tiwa, J. Foba Tendo, R. S. Teixeira, E. B. Ojo, G. C. Komadja, M. Kadivar and H. Savastano Junior, "Effect of cellulose pulp fibres on the physical, mechanical, and thermal performance of extruded earth-based materials," Journal of Building Engineering, vol. 39, p. 102259, Jul. 2021, doi: 10.1016/j.jobe.2021.102259.
B. M. Ganou Koungang, J. O. Tchamdjou Mbouendeu, D. Ndapeu, Z. Zhao, G. Tchemou, F. Michel, E. Njeugna, A. Messan and L. Courard, "Experimental thermophysical dependent mechanical analysis of earth bricks with Canarium schweinfurthii and Cocos nucifera bio-aggregates-A Case study in Cameroon," Cogent Eng, pp. 1–25, Jan. 2023.
M. Mostafa and N. Uddin, "Effect of banana fibers on the compressive and flexural strength of compressed earth blocks," Buildings, vol. 5, no. 1, pp. 282–296, 2015, doi: 10.3390/buildings5010282.
M. Mostafa and N. Uddin, "Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces," Case Studies in Construction Materials, vol. 5, pp. 53–63, 2016, doi: 10.1016/j.cscm.2016.07.001.
L. C. Labaki and D. C. C. K. Kowaltowski, "Bioclimatic and Vernacular Design in Urban Settlements of Brazil," Build Environ, vol. 33, no. 1, pp. 63–77, Jan. 1998, doi: 10.1016/S0360-1323(97)00024-3.
M. S. Imran, A. Baharun, S. H. Ibrahim and W. A. Bin Wan Zainal Abidin, "Renewable Night Cooled Chill Water Source for Energy Efficient Indoor Radiant Cooling," International Journal of Engineering Research in Africa, vol. 26, pp. 86–98, 2016, doi: 10.4028/WWW.SCIENTIFIC.NET/JERA.26.86.
W. A. Mahar, "Methodology for the design of climate-responsive houses for improved thermal comfort in cold semi-arid climates," University of Liege, 2021.
M. Kameni Nematchoua, P. Ricciardi, S. Reiter and A. Yvon, "A comparative study on optimum insulation thickness of walls and energy savings in equatorial and tropical climate," International Journal of Sustainable Built Environment, vol. 6, no. 1, pp. 170–182, 2017, doi: 10.1016/j.ijsbe.2017.02.001.
N. Daouas, Z. Hassen and H. Ben Aissia, "Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia," Appl Therm Eng, vol. 30, no. 4, pp. 319–326, 2010, doi: 10.1016/j.applthermaleng.2009.09.009.
M. S. Mohsen and B. A. Akash, "Some prospects of energy savings in buildings," Energy Convers Manag, vol. 42, no. 11, pp. 1307–1315, 2001, doi: 10.1016/S0196-8904(00)00140-0.
B. Chenari, J. Dias Carrilho and M. Gameiro Da Silva, "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp. 1426–1447, Jun. 01, 2016. doi: 10.1016/j.rser.2016.01.074.
V. Costanzo, K. Fabbri and S. Piraccini, "Stressing the passive behavior of a Passivhaus: An evidence-based scenario analysis for a Mediterranean case study," Build Environ, vol. 142, pp. 265–277, Sep. 2018, doi: 10.1016/j.buildenv.2018.06.035.
E. Grigoropoulos, D. Anastaselos, S. Nižetić and A. M. Papadopoulos, "Effective ventilation strategies for net zero-energy buildings in Mediterranean climates," International Journal of Ventilation, vol. 16, no. 4, pp. 291–307, 2017, doi: 10.1080/14733315.2016.1203607.
A. Janssen, L. Delem, L. Wastiels and J. Van Dessel, Principes et points d’attention lors du choix de matériaux de construction durables. Bruxelles: CSTC, 2015.
M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen and H.-J. Klüppel, "The new international standards for life cycle assessment: ISO 14040 and ISO 14044," Int J Life Cycle Assess, vol. 11, pp. 80–85, 2006.
ASHRAE 140, "Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs," ASHRAE, pp. 1–352, 2017.
ASHRAE 55, "Thermal environmental conditions for human occupancy," ASHRAE, p. 80, 2020.
W. A. Mahar, G. Verbeeck, M. K. Singh and S. Attia, "An investigation of thermal comfort of houses in dry and semi-arid climates of Quetta, Pakistan," Sustainability, vol. 11, no. 19, 2019, doi: 10.3390/su11195203.
L. Rincón, A. Carrobé, I. Martorell and M. Medrano, "Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design," Journal of Building Engineering, vol. 24, no. February, p. 100732, 2019, doi: 10.1016/j.jobe.2019.100732.
CEN, "15804+ A2: 2019; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products," European Committee for Standardization: Brussels, Belgium, 2019.
Libération, “Le porte-conteneurs français Saint Exupéry émet-il autant de CO2 que 55 millions de voitures?," 2018. https://www.liberation.fr/checknews/2018/09/19/le-porte-conteneurs-francais-saint-exupery-emet-il-autant-de-co2-que-55-millions-de-voitures_1679489/(accessed Apr. 22, 2021).
G. Hammond and C. Jones, A BSRIA Guide. Embodied Carbon: The Inventory of Carbon and Energy. Old Bracknell Lane West: BSRIA BG, 2011. [Online]. Available: http://www.ihsti.com/tempimg/57c152b-ENVIRO2042201160372.pdf%0Awww.bath.ac.uk/mech-eng/sert/embodied%0A
G. Hammond and C. Jones, A BSRIA Guide. Embodied Carbon: The Inventory of Carbon and Energy. Old Bracknell Lane West: BSRIA BG, 2011.
J. Kośny, PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures. New York: Springer, 2015. doi: 10.1007/978-3-319-14286-9.
ASTERRE, “Mur porteur en pisé non stabilisé de 50 cm d’épaisseur en moyenne,” INIES, p. 10, 2021, Accessed: Apr. 21, 2021. [Online]. Available: https://www.base-inies.fr/iniesV4/dist/infos-produit(consulté le 21-04-2021)
CEREMA, “Remplissage d’un mur en terre-paille de 30 cm d’épaisseur en moyenne (v.1.1),” INIES, 2020. https://www.base-inies.fr/iniesV4/dist/infos-produit