[en] The impact of climate change on water resource availability and soil quality is more and more emphasized under the Mediterranean basin, mostly characterized by drought and extreme weather conditions. The present study aims to investigate how electromagnetic induction technique and soil mapping combined with crop yield data can be used to optimize phosphorus (P) use efficiency by chickpea crop under drip fertigation system. The study was carried out on a 2.5-ha agricultural plot and the agronomic experiments in two growing cycles of chickpea crop. Soil spatial variability was first assessed by the measurement of soil apparent electrical conductivity (ECa) using the CMD Mini-Explorer sensor, and then, soil physicochemical properties were evaluated based on an oriented soil sampling scheme to explore other soil spatial variabilities influencing chickpea yield and quality. Data from the first agronomic experiment were used in geostatistical, multiple linear regression (MLR), and fuzzy c-means unsupervised classification algorithms to properly identify P drip fertigation management zones (MZs). Results from the Person's correlation analysis revealed that chickpea grain yield was more influenced by soil ECa (r = - 0.56), pH (r = - 0.84), ECe (r = - 0.6), P content (r = 0.72), and calcium (Ca) content (r = - 0.83). The proposed MLR-based model to predict chickpea grain yield showed good performances with a normalized root mean square error (NRMSE) of 0.11% and a coefficient of determination (R2) equal to 0.69. The identified MZs were verified by the one-way variance analysis for the studied soil and plant attributes, revealing that the first MZ1 presents a high grain yield, high soil P content, and low ECa. The low fertility MZ2 located in the south part of the studied site presented a low chickpea grain yield due to the low P content and the high ECa. Moreover, the application of P-variable rate fertigation regimes in the second field experiment significantly improved P use efficiency, chickpea grain yield, seed quality, and farmer income by 18%, 12%, 9%, and 136 $/ha, respectively, as compared to the conventional drip fertigation practices. The approach proposed in this study can greatly contribute to optimizing agro-input use efficiency under drip fertigation system, thereby improving farmers' incomes, preserving the ecosystem, and ensuring sustainable cropping systems in the Mediterranean climate.
Disciplines :
Agriculture & agronomy
Author, co-author :
Chtouki, Mohamed ; Université de Liège - ULiège > TERRA Research Centre ; AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco. mohamed.chtouki@um6p.ma
Nguyen, Frédéric ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Garré, Sarah; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9090, Melle, Belgium
Oukarroum, Abdallah; AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco
Language :
English
Title :
Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions.
Abdel Rahman MAE, Zakarya YM, Metwaly MM, Koubouris G (2021) Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainab (Switzerland) 13(1). https://doi.org/10.3390/su13010194
Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Elect Agric 44(1). 10.1016/j.compag.2004.03.002
Altdorff D, Sadatcharam K, Unc A et al (2020) Comparison of multi-frequency and multi-coil electromagnetic induction (emi) for mapping properties in shallow podsolic soils. Sensors (Switzerland) 20(8):2330. 10.3390/s20082330 DOI: 10.3390/s20082330
Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22. https://doi.org/10.1127/0941-2948/2013/0507
Arai Y, Sparks DL (2007) Phosphate reaction dynamics in soils and soil components: a multiscale approach. Adv Agro. https://doi.org/10.1016/S0065-2113(06)94003-6
Atieno J, Li Y, Langridge P et al (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7(1):1300. 10.1038/s41598-017-01211-7 DOI: 10.1038/s41598-017-01211-7
Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9. 10.3389/fmicb.2018.01606
Bindraban PS, Dimkpa CO, Pandey R (2020) Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 56(3):299–317. 10.1007/s00374-019-01430-2 DOI: 10.1007/s00374-019-01430-2
Boluwade A, Madramootoo C, Yari A (2016) Application of unsupervised clustering techniques for management zone delineation: case study of variable rate irrigation in Southern Alberta, Canada. J Irrig Drainage Eng 142(1). 10.1061/(asce)ir.1943-4774.0000936
Bronson KF, Booker JD, Officer SJ, Lascano RJ, Maas SJ, Searcy SW, Booker J (2005) Apparent Electrical Conductivity Soil Properties and Spatial Covariance in the U.S. Southern High Plains. Precis Agric 6(3):297–311. 10.1007/s11119-005-1388-6 DOI: 10.1007/s11119-005-1388-6
Burak S, Margat J (2016) Water management in the Mediterranean region: concepts and policies. Water Resour Manag. 10.1007/s11269-016-1389-4
Castrignanò A, Wong MTF, Stelluti M, De Benedetto D, Sollitto D (2012) Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma:175–176. https://doi.org/10.1016/j.geoderma.2012.01.013
Chabrillat S, Ben-Dor E, Cierniewski J, Gomez C, Schmid T, van Wesemael B (2019) Imaging spectroscopy for soil mapping and monitoring. Surv Geophys. 10.1007/s10712-019-09524-0
Chatterjee S, Hartemink AE, Triantafilis J, Desai AR, Soldat D, Zhu J, et al. (2021) Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis. Catena 201. 10.1016/j.catena.2021.105190
Chtouki M, Naciri R, Garré S, Nguyen F, Oukarroum A (2022a) Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: effect on photosynthetic performance and phenotypic traits. Funct Plant Biol 49(6):505–516. 10.1071/FP21035 DOI: 10.1071/FP21035
Chtouki M, Naciri R, Garré S, Nguyen F, Zeroual Y, Oukarroum A (2022b) Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation. J Plant Nutri Soil Sci 185(5):603–611. 10.1002/jpln.202100439 DOI: 10.1002/jpln.202100439
Cisternas I, Velásquez I, Caro A, Rodríguez A (2020) Systematic literature review of implementations of precision agriculture. Comput Elect Agric. 10.1016/j.compag.2020.105626
Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43. 10.1016/j.compag.2004.10.005
Corwin DL, Scudiero E (2020) Field-scale apparent soil electrical conductivity. Soil Sci Soc Am J 84(5):1405–1441
Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A et al (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Climate Change. 10.1038/s41558-018-0299-2
da Silva EE, Baio FHR, Teodoro LPR, Campos CNS, Plaster OB, Teodoro PE (2022) Variable-rate seeding in soybean according to soil attributes related to grain yield. Precision Agric 23(1). 10.1007/s11119-021-09826-7
Daccache A, Ciurana JS, Rodriguez Diaz JA, Knox JW (2014) Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ Res Lett. 10.1088/1748-9326/9/12/124014
Deng Y, Zhao L, Anwar S et al (2022) Phosphorus fertigation conferred lodging tolerance and improved grain quality in Chenopodium quinoa via enhanced root proliferation and stalk strength. J Soil Sci Plant Nutri 22:5099–5110. 10.1007/s42729-022-00986-7 DOI: 10.1007/s42729-022-00986-7
Dennerley C, Huang J, Nielson R et al (2018) Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data. Soil Use Manag 34(2):219–235. 10.1111/sum.12410 DOI: 10.1111/sum.12410
Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma. 10.1016/j.geoderma.2014.01.027
Eissa MA (2014) Effect of low and high frequency of phosphorus fertigation on movement of different forms of phosphorus fertilizers in sandy calcareous soils. World Appl Sci J. https://doi.org/10.5829/idosi.wasj.2014.31.12.637
Eissa MA (2016) Nutrition of drip irrigated corn by phosphorus under sandy calcareous soils. J Plant Nutri 39(11):1620–1626. 10.1080/01904167.2016.1161783 DOI: 10.1080/01904167.2016.1161783
Fan M, Shen J, Yuan L et al (2012) Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63(1):13–24. 10.1093/jxb/err248 DOI: 10.1093/jxb/err248
Gavioli A, de Souza EG, Bazzi CL, Guedes LPC, Schenatto K (2016) Optimization of management zone delineation by using spatial principal components. Comput Electron Agric 127:302–310
Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89(1–2). 10.1016/S0016-7061(98)00078-0
Gorai T, Yadav PK, Choudhary GL, Kumar A (2021) Site-specific crop nutrient management for precision agriculture—a review. Current J Appl Sci Technol. https://doi.org/10.9734/cjast/2021/v40i1031357
Gracia-Romero A, Kefauver SC, Vergara-Díaz O et al (2017) Comparative performance of ground vs. Aerially assessed rgb and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front Plant Sci 8:2004. 10.3389/fpls.2017.02004 DOI: 10.3389/fpls.2017.02004
Grubbs RA, Straw CM, Bowling WJ et al (2019) Predicting spatial structure of soil physical and chemical properties of golf course fairways using an apparent electrical conductivity sensor. Precis Agric 20:496–519. 10.1007/s11119-018-9593-2 DOI: 10.1007/s11119-018-9593-2
Gundy GJ, Dille JA (2022) Implementing variable-rate herbicide applications based on soil physical properties in grain sorghum. Precis Agric 23:768–790. 10.1007/s11119-021-09860-5 DOI: 10.1007/s11119-021-09860-5
Hardie M (2020) Review of novel and emerging proximal soil moisture sensors for use in agriculture. Sensors (Switzerland) 20(23). 10.3390/s20236934
Hatzenbuehler PL, Du X, Painter K (2021) Price transmission with sparse market information: The case of United States chickpeas. Agribusiness 37. 10.1002/agr.21672
Heiß A, Paraforos DS, Sharipov GM, Griepentrog HW (2021) Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application. Comput Elect Agric 182. 10.1016/j.compag.2021.106008
Idrees N, Kamal S (2021) Modelling of wheat production in punjab through the regularized regression approach while addressing multicollinearity. Pakistan J Agric Sci 58(1):179–186. 10.21162/PAKJAS/21.9322 DOI: 10.21162/PAKJAS/21.9322
Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour Manag. 10.1007/s11269-006-9111-6
Jadoon KZ, Moghadas D, Jadoon A, Missimer TM, Al-Mashharawi SK, McCabe MF (2015) Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements. Water Resour Res 51(5). 10.1002/2014WR016245
Jasim A, Zaeen A, Sharma LK et al (2020) Predicting phosphorus and potato yield using active and passive sensors. Agric 10(11):564. 10.3390/agriculture10110564 DOI: 10.3390/agriculture10110564
John K, Afu SM, Isong IA, Aki EE, Kebonye NM, Ayito EO, et al. (2021) Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int J Environ Sci Technol 18(11). 10.1007/s13762-020-03089-x
Johnson CK, Mortensen DA, Wienhold BJ, Shanahan JF, Doran JW (2003) Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agro J 95(2). https://doi.org/10.2134/agronj2003.0303
Kaffka SR, Lesch SM, Bali KM, Corwin DL (2005) Site-specific management in salt-affected sugar beet fields using electromagnetic induction. Comput Electron Agric 46(1–3):329–350. 10.1016/j.compag.2004.11.013
King JA, Dampney PMR, Lark RM, Wheeler HC, Bradley RI, Mayr TR (2005) Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precis Agric 6(2):167–181. 10.1007/s11119-005-1033-4 DOI: 10.1007/s11119-005-1033-4
Kitchen NR, Sudduth KA, Myers DB, Drummond ST, Hong SY (2005) Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comput Electro Agric 46(1-3 SPEC. ISS.). https://doi.org/10.1016/j.compag.2004.11.012
Lea-Cox JD, Smith IE (2019) The effect of soluble and slowly soluble phosphorus supply on the growth of three citrus rootstocks in a composted pine bark substrate. HortScience. https://doi.org/10.21273/hortsci.32.3.542b
Li Y, Shi Z, Li F, Li HY (2007) Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput Electro Agric 56(2). https://doi.org/10.1016/j.compag.2007.01.013
Longo M, Piccoli I, Minasny B, Morari F (2020) Soil apparent electrical conductivity-directed sampling design for advancing soil characterization in agricultural fields. Vadose Zo J 19:e20060. https://doi.org/10.1002/vzj2.20060
Macil PJ, Ogola JBO, Odhiambo JJO, Lusiba SG (2017) The response of some physiological traits of chickpea (Cicer arietinum L.) to biochar and phosphorus fertilizer application. Legum Res 40:299–305. https://doi.org/10.18805/lr.v0i0.7290
Maleki MR, Mouazen AM, Ramon H, De Baerdemaeker J (2007) Optimisation of soil VIS-NIR sensor-based variable rate application system of soil phosphorus. Soil Tillage Res 94(1). 10.1016/j.still.2006.07.016
Malhotra H, Vandana SS, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance (pp. 171–190). https://doi.org/10.1007/978-981-10-9044-8_7
McKinney W (2011) Pandas: a Foundational Python Library for Data Analysis and Statistics. Python High Perform Sci Comput
Memon M, Rajput AN, Rajput A et al (2016) Response of chickpea cultivars to phosphorus application. Soil Environ 35(1):22–29
Menezes-Blackburn D, Giles C, Darch T et al (2018) Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 427(1):5–16. 10.1007/s11104-017-3362-2 DOI: 10.1007/s11104-017-3362-2
Metwally MS, Shaddad SM, Liu M, Yao RJ, Abdo AI, Li P, et al. (2019) Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability (Switzerland), 11(24). https://doi.org/10.3390/su11247084
Mikkelsen RL (2013) Phosphorus fertilization through drip irrigation. jpa. https://doi.org/10.2134/jpa1989.0279
Mirás-Avalos JM, Cancela JJ, Fandiño M et al (2020) Zoning of a newly-planted vineyard: Spatial variability of physico-chemical soil properties. Soil Syst 4(4):62. 10.3390/soilsystems4040062 DOI: 10.3390/soilsystems4040062
Mittermayer M, Gilg A, Maidl FX, Nätscher L, Hülsbergen KJ (2021) Site-specific nitrogen balances based on spatially variable soil and plant properties. Precision Agriculture 22(5). https://doi.org/10.1007/s11119-021-09789-9
Mizik T (2023) How can precision farming work on a small scale? A systematic literature review. Precision Agric 24:384–406. 10.1007/s11119-022-09934-y DOI: 10.1007/s11119-022-09934-y
Moharana PC, Jena RK, Pradhan UK, Nogiya M, Tailor BL, Singh RS, Singh SK (2020) Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precis Agric 21:426–448
Morari F, Zanella V, Sartori L, Visioli G, Berzaghi P, Mosca G (2018) Optimising durum wheat cultivation in North Italy: understanding the effects of site-specific fertilization on yield and protein content. Precis Agric 19:257–277
Munnaf MA, Haesaert G, Van Meirvenne M, Mouazen AM (2020) Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Comput Electron Agric 178:05752. 10.1016/j.compag.2020.105752 DOI: 10.1016/j.compag.2020.105752
Nogueira Martins R, Magalhães Valente DS, Fim Rosas JT et al (2020) Site-specific nutrient management zones in soybean field using multivariate analysis: an approach based on variable rate fertilization. Commun Soil Sci Plant Anal 51:687–700. 10.1080/00103624.2020.1729793
Odeh IOA, McBratney AB, Chittleborough DJ (1992) Soil pattern recognition with Fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sci Soc Am J 56(2):505–516. 10.2136/sssaj1992.03615995005600020050x DOI: 10.2136/sssaj1992.03615995005600020050x
Olsen SR, Cole CV, Watandbe F, Dean L (1954) Estimation of available phosphorus in soil by extraction with sodium bicarbonate. J Chem Inform Model 53(9):1–19
Pang J, Ryan MH, Lambers H, Siddique KH (2018) Phosphorus acquisition and utilisation in crop legumes under global change. Current Opinion Plant Biol. 10.1016/j.pbi.2018.05.012
Pingoliya KK, Mathur AK, Dotaniya ML, Dotaniya CK (2015) Impact of phosphorus and iron on protein and chlorophyll content in chickpea (Cicer arietinum L.). Legum Res - An Int J 38:558. https://doi.org/10.5958/0976-0571.2015.00137.x
Potdar RP, Shirolkar MM, Verma AJ et al (2021) Determination of soil nutrients (NPK) using optical methods: a mini review. J Plant Nutr 44:1826–1839. 10.1080/01904167.2021.1884702
Quigley MY, Rivers ML, Kravchenko AN (2018) Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front Environ Sci 6(28). https://doi.org/10.3389/fenvs.2018.00028
Rodríguez-Pérez JR, Plant RE, Lambert JJ, Smart DR (2011) Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis Agric 12:775–794. 10.1007/s11119-011-9220-y DOI: 10.1007/s11119-011-9220-y
Rong LB, Gong KY, Duan FY et al (2021) Yield gap and resource utilization efficiency of three major food crops in the world – A review. J Integr Agric 20(2):349–362. 10.1016/S2095-3119(20)63555-9 DOI: 10.1016/S2095-3119(20)63555-9
Ryan J, Sommer R (2012) Soil fertility and crop nutrition research at an international center in the Mediterranean region: achievements and future perspective. Arch Agron Soil Sci, 58(SUPPL.). https://doi.org/10.1080/03650340.2012.693601
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X et al (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005. 10.1104/pp.111.175232 DOI: 10.1104/pp.111.175232
Silber A, Xu G, Levkovitch I, Soriano S, Bilu A, Wallach R (2003) High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant Soil 253(2):467–477. 10.1023/A:1024857814743 DOI: 10.1023/A:1024857814743
Simpson RJ, Oberson A, Culvenor RA et al (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. 10.1007/s11104-011-0880-1 DOI: 10.1007/s11104-011-0880-1
Song X, Wang J, Huang W et al (2009) The delineation of agricultural management zones with high resolution remotely sensed data. Precis Agric 10:471–487. 10.1007/s11119-009-9108-2 DOI: 10.1007/s11119-009-9108-2
Sishodia RP, Ray RL, Singh SK (2020) Applications of remote sensing in precision agriculture: a review. Remote Sens 12(19). 10.3390/rs12193136
Sleep B, Mason S, Janik L, Mosley L (2022) Application of visible near-infrared absorbance spectroscopy for the determination of soil pH and liming requirements for broad-acre agriculture. Precision Agric 23(1). 10.1007/s11119-021-09834-7
Testa G, Gresta F, Cosentino SL (2011) Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur J Agron 34(3):144–152. 10.1016/j.eja.2010.12.001
Torres-Dorante LO, Claassen N, Steingrobe B, Olfs HW (2006) Fertilizer-use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn. J Plant Nutri Soil Sci 169(4):509–515. 10.1002/jpln.200520584 DOI: 10.1002/jpln.200520584
Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: A structure for efficient numerical computation. Comput Sci Eng 13:22–30. 10.1109/MCSE.2011.37 DOI: 10.1109/MCSE.2011.37
Van Loon J, Speratti AB, Govaerts B (2018) Precision for smallholder farmers: a small-scale-tailored variable rate fertilizer application kit. Agriculture (Switzerland) 8(4). https://doi.org/10.3390/agriculture8040048
van Rossum G, Drake FL (2009) Python 3 Reference Manual
Volf MR, Rosolem CA (2021) Soil P diffusion and availability modified by controlled-release P fertilizers. J Soil Sci Plant Nutri 21(1). https://doi.org/10.1007/s42729-020-00350-7
von Hebel C, Reynaert S, Pauly K et al (2021) Toward high-resolution agronomic soil information and management zones delineated by ground-based electromagnetic induction and aerial drone data. Vadose Zo J 20(4):e20099
Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63. https://doi.org/10.1097/00010694-194704000-00001
Walters RW, Jenq RR, Hall SB (2000) Evaluating farmer defined management zone maps for variable rate fertilizer application. Precis Agric 2:201–215. 10.1023/A:1011481832064 DOI: 10.1023/A:1011481832064
Wang Z, Li J, Hao F, Li Y (2017). Effects of phosphorus fertigation and lateral depths on distribution of Olsen-P in soil and yield of maize under subsurface drip irrigation. In 2017 ASABE Annual International Meeting. https://doi.org/10.13031/aim.201701105
Wang T, Jin H, Sieverding H et al (2023) Understanding farmer views of precision agriculture profitability in the U.S. Midwest. Ecol Econ 213:107950. 10.1016/j.ecolecon.2023.107950 DOI: 10.1016/j.ecolecon.2023.107950
Webster R, Oliver MA (2008) Geostatistics for environmental scientists, 2nd edn. Wiley
Wollenhaupt NC, Wolkowski RP, Clayton MK (1994) Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J Prod Agric 7:441–448. 10.2134/jpa1994.0441 DOI: 10.2134/jpa1994.0441
Yamin M, Bin Wan Ismail WI, Abd Aziz S et al (2022) Design considerations of variable rate liquid fertilizer applicator for mature oil palm trees. Precis Agric 23:1413–1448. 10.1007/s11119-022-09892-5 DOI: 10.1007/s11119-022-09892-5
Yue J, Feng H, Yang G, Li Z (2018) A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens 10(1):66. 10.3390/rs10010066 DOI: 10.3390/rs10010066
Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precision Agric. https://doi.org/10.1007/s11119-012-9274-5