Article (Scientific journals)
Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions.
Chtouki, Mohamed; Nguyen, Frédéric; Garré, Sarah et al.
2023In Environmental Science and Pollution Research
Peer reviewed
 

Files


Full Text
Chtouki et al 2023.pdf
Author postprint (3.93 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Electrical conductivity; Fuzzy c-means clustering; Nutrient management; Soil spatial variability; Yield map; Environmental Chemistry
Abstract :
[en] The impact of climate change on water resource availability and soil quality is more and more emphasized under the Mediterranean basin, mostly characterized by drought and extreme weather conditions. The present study aims to investigate how electromagnetic induction technique and soil mapping combined with crop yield data can be used to optimize phosphorus (P) use efficiency by chickpea crop under drip fertigation system. The study was carried out on a 2.5-ha agricultural plot and the agronomic experiments in two growing cycles of chickpea crop. Soil spatial variability was first assessed by the measurement of soil apparent electrical conductivity (ECa) using the CMD Mini-Explorer sensor, and then, soil physicochemical properties were evaluated based on an oriented soil sampling scheme to explore other soil spatial variabilities influencing chickpea yield and quality. Data from the first agronomic experiment were used in geostatistical, multiple linear regression (MLR), and fuzzy c-means unsupervised classification algorithms to properly identify P drip fertigation management zones (MZs). Results from the Person's correlation analysis revealed that chickpea grain yield was more influenced by soil ECa (r = - 0.56), pH (r = - 0.84), ECe (r = - 0.6), P content (r = 0.72), and calcium (Ca) content (r = - 0.83). The proposed MLR-based model to predict chickpea grain yield showed good performances with a normalized root mean square error (NRMSE) of 0.11% and a coefficient of determination (R2) equal to 0.69. The identified MZs were verified by the one-way variance analysis for the studied soil and plant attributes, revealing that the first MZ1 presents a high grain yield, high soil P content, and low ECa. The low fertility MZ2 located in the south part of the studied site presented a low chickpea grain yield due to the low P content and the high ECa. Moreover, the application of P-variable rate fertigation regimes in the second field experiment significantly improved P use efficiency, chickpea grain yield, seed quality, and farmer income by 18%, 12%, 9%, and 136 $/ha, respectively, as compared to the conventional drip fertigation practices. The approach proposed in this study can greatly contribute to optimizing agro-input use efficiency under drip fertigation system, thereby improving farmers' incomes, preserving the ecosystem, and ensuring sustainable cropping systems in the Mediterranean climate.
Disciplines :
Agriculture & agronomy
Author, co-author :
Chtouki, Mohamed  ;  Université de Liège - ULiège > TERRA Research Centre ; AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco. mohamed.chtouki@um6p.ma
Nguyen, Frédéric ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Garré, Sarah;  Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9090, Melle, Belgium
Oukarroum, Abdallah;  AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco
Language :
English
Title :
Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions.
Publication date :
19 September 2023
Journal title :
Environmental Science and Pollution Research
ISSN :
0944-1344
eISSN :
1614-7499
Publisher :
Springer Science and Business Media LLC, Germany
Peer reviewed :
Peer reviewed
Available on ORBi :
since 22 September 2023

Statistics


Number of views
75 (8 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi