[en] Greenland experienced multiple extreme weather/climate events in recent decades that led to significant melting of the ice sheet. However, how the intensity of extreme climate events over Greenland varied under recent warming has not been fully examined. Here, we collect 176 in situ observations over Greenland and demonstrate that the observed extreme temperature/precipitation events over Greenland are well captured by the RACMO2.3p2 model, in terms of climatological distribution, interannual variability, and long-term trend. Thus, we then investigate the spatiotemporal features of extreme events over Greenland during 1958–2019, using the daily model outputs at 5.5-km resolution. The simulated annual maximum temperature exhibits a significant increasing trend (∼0.13°C decade−1) during 1958–2019, whereas there is a weakening trend (−0.24°C decade−1) in annual minimum temperature over Greenland, especially after the 1990s (−1.24°C decade−1). For the interannual variability, changes in temperature extremes between warm and cold temperature years share large similarities with the distributions of long-term trends. The extreme precipitation events measured by annual maximum daily precipitation amount show a profound increasing trend (0.52 mm day−1 decade−1) over northeastern Greenland during 1958–2019, with large interannual variability in the ice-free coastal region and southern Greenland. Additionally, the changes in extreme warm and cold events are generally linked with the variation of Greenland blocking in summer and Arctic polar vortex in winter, respectively, in terms of favorable circulation background; and the extreme precipitation events are often associated with the position of the polar jet stream.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Wei, Ting; 1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Zhao, Shoudong; 1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; 2Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
Yan, Qing; 3Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Qi, Wei; 1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Language :
English
Title :
Deciphering the trend and interannual variability of temperature and precipitation extremes over Greenland during 1958–2019
Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dyn., 52, 1739–1760, https://doi.org/10.1007/ s00382-018-4223-2.
Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.
Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86, https://doi.org/10.1038/nature12002.
Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland Ice Sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012.
Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491–496, https://doi.org/10.1038/nclimate1452.
Culberg, R., D. M. Schroeder, and W. Chu, 2021: Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun., 12, 2336, https://doi.org/10.1038/s41467-021-22656-5.
Cullather, R. I., and Coauthors, 2020: Anomalous circulation in July 2019 resulting in mass loss on the Greenland Ice Sheet. Geophys. Res. Lett., 47, e2020GL087263, https://doi.org/10.1029/ 2020GL087263.
Diffenbaugh, N. S., 2020: Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv., 6, eaay2368, https://doi.org/10.1126/sciadv.aay2368.
Fausto, R. S., and Coauthors, 2021: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021.
Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020.
Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560–564, https://doi.org/10.1038/nclimate2617.
Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852–857, https://doi.org/10.1126/science.1234532.
Guo, D., Y. Zhang, X. Gao, N. Pepin, and J. Sun, 2021: Evaluation and ensemble projection of extreme high and low temperature events in China from four dynamical downscaling simulations. Int. J. Climatol., 41 (Suppl. 1), E1252–E1269, https://doi.org/10.1002/joc.6765.
Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331–341, https://doi.org/10.1175/2007JCLI1964.1.
Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int. J. Climatol., 34, 1022–1037, https://doi.org/10.1002/joc.3743.
Hanna, E., and Coauthors, 2020: Mass balance of the ice sheets and glaciers}Progress since AR5 and challenges. Earth-Sci. Rev., 201, 102976, https://doi.org/10.1016/j.earscirev.2019.102976.
Hanna, E., and Coauthors, 2021: Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol., 41 (Suppl. 1), E1336–E1352, https://doi.org/10.1002/joc.6771.
Hawley, R. L., Z. R. Courville, L. M. Kehrl, E. R. Lutz, E. C. Osterberg, T. B. Overly, and G. J. Wong, 2014: Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland inland traverse. J. Glaciol., 60, 375–382, https://doi.org/10.3189/2014JoG13J141.
Herring, S. C., N. Christidis, A. Hoell, J. P. Kossin, C. J. Schreck III, and P. A. Stott, 2018: Introduction to Explaining Extreme Events of 2016 from a Climate Perspective [in “Explaining Extreme Events of 2016 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 99 (1), S54–S59, https://doi.org/10.1175/BAMS-D-17-0284.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584.
Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2019: Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Climate Change, 9, 523–528, https://doi.org/10.1038/s41558-019-0507-8.
Huai, B. J., M. R. van den Broeke, C. H. Reijmer, and J. Cappellen, 2021: Quantifying rainfall in Greenland: A combined observational and modeling approach. J. Appl. Meteor. Climatol., 60, 1171–1188, https://doi.org/10.1175/JAMC-D-20-0284.1.
Huai, B. J., M. R. van den Broeke, C. H. Reijmer, and B. Noël, 2022: A daily 1-km resolution Greenland rainfall climatology (1958–2020) from statistical downscaling of a regional atmospheric climate model. J. Geophys. Res. Atmos., 127, e2022JD036688, https://doi.org/10.1029/2022JD036688.
IMBIE Team, 2020: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233–239, https://doi.org/10.1038/ s41586-019-1855-2.
Karl, T. R., N. Nicholls, and A. Ghazi, 1999: CLIVAR/GCOS/ WMO Workshop on Indices and Indicators for Climate Extremes: Workshop summary. Climatic Change, 42, 3–7, https://doi.org/10.1023/A:1005491526870.
Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444, https://doi.org/10.1175/JCLI4066.1.
Kim, Y.-H., S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad, 2020: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Wea. Climate Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269.
Koenig, L. S., and Coauthors, 2016: Annual Greenland accumulation rates (2009–2012) from airborne snow radar. Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016.
Lamarche-Gagnon, G., and Coauthors, 2019: Greenland melt drives continuous export of methane from the ice-sheet bed. Nature, 565, 73–77, https://doi.org/10.1038/s41586-018-0800-0.
Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713.
Lewis, G., and Coauthors, 2019: Recent precipitation decrease across the western Greenland Ice Sheet percolation zone. Cryosphere, 13, 2797–2815, https://doi.org/10.5194/tc-13-2797-2019.
Lott, N., R. Vose, S. A. Del Greco, T. F. Ross, S. J. Worley, and J. Comeaux, 2008: The integrated surface database: Partnerships and progress. 24th Conf. on Interactive Information and Processing Systems, New Orleans, LA, Amer. Meteor. Soc., 3B.5, https://ams.confex.com/ams/88Annual/techprogram/paper_131387.htm.
Mankoff, K. D., and Coauthors, 2021: Greenland Ice Sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021.
Mattingly, K. S., T. L. Mote, X. Fettweis, D. van As, K. Van Tricht, S. Lhermitte, C. Pettersen, and R. S. Fausto, 2020: Strong summer atmospheric rivers trigger Greenland Ice Sheet melt through spatially varying surface energy balance and cloud regimes. J. Climate, 33, 6809–6832, https://doi.org/10.1175/JCLID-19-0835.1.
Mernild, S. H., and Coauthors, 2015: Greenland precipitation trends in a long-term instrumental climate context (1890–2012): Evaluation of coastal and ice core records. Int. J. Climatol., 35, 303–320, https://doi.org/10.1002/joc.3986.
Moon, T. A., A. S. Gardner, B. Csatho, I. Parmuzin, and M. A. Fahnestock, 2020: Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf., 125, e2020JF005585, https://doi.org/10.1029/2020JF005585.
Moon, T. A., and Coauthors, 2021: Arctic Report Card 2021: Rapid and pronounced warming continues to drive the evolution of the Arctic environment. NOAA Tech. Rep., 126 pp., https://arctic.noaa.gov/Portals/7/ArcticReportCard/Documents/ ArcticReportCard_full_report2021.pdf.
Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904 242116.
Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.
Niwano, M., J. E. Box, A. Wehrlé, B. Vandecrux, W. T. Colgan, and J. Cappelen, 2021: Rainfall on the Greenland Ice Sheet: Present-day climatology from a high-resolution non-hydrostatic polar regional climate model. Geophys. Res. Lett., 48, e2021GL092942, https://doi.org/10.1029/2021GL092942.
Noël, B., W. J. van de Berg, S. Lhermitte, and M. R. van den Broeke, 2019: Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123.
Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.
Preece, J. R., L. J. Wachowicz, T. L. Mote, M. Tedesco, and X. Fettweis, 2022: Summer Greenland blocking diversity and its impact on the surface mass balance of the Greenland Ice Sheet. J. Geophys. Res. Atmos., 127, e2021JD035489, https://doi.org/10.1029/2021JD035489.
Sasgen, I., and Coauthors, 2020: Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ., 1, 8, https://doi.org/10.1038/ s43247-020-0010-1.
Sasgen, I., A. Salles, M. Wegmann, B. Wouters, X. Fettweis, B. P. Y. Noël, and C. Beck, 2022: Arctic glaciers record wavier circumpolar winds. Nat. Climate Change, 12, 249–255, https://doi.org/10.1038/s41558-021-01275-4.
Schaller, N., J. Sillmann, J. Anstey, E. M. Fischer, C. M. Grams, and S. Russo, 2018: Influence of blocking on northern European and western Russian heatwaves in large climate model ensembles. Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55.
Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513–1766.
Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203.
Stark, D., S. van Hal, D. Marriott, J. Ellis, and J. Harkness, 2007: Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int. J. Parasitol., 37, 11–20, https://doi.org/10.1016/j.ijpara.2006.09.009.
Steffen, K., J. E. Box, and W. Abdalati, 1996: Greenland Climate Network: GC-Net. Glaciers, ice sheets and volcanoes: Tribute to M. Meier, USACE CRREL Special Rep. 96-97, 98–103.
Tedesco, M., and X. Fettweis, 2020: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020.
Tedesco, M., J. E. Box, T. S. Jensen, T. Mote, A. K. Rennermalm, L. C. Smith, R. S. W. van de Wal, and J. Wahr, 2014: Greenland Ice Sheet [in “State of the Climate in 2002”]. Bull. Amer. Meteor. Soc., 95 (7), S136–S138, https://doi.org/10.1175/ 2014BAMSStateoftheClimate.1.
Tedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyaratnam, and J. Stroeve, 2016: The darkening of the Greenland Ice Sheet: Trends, drivers, and projections (1981–2100). Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016.
Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute Doc., 146 pp., https://repositorio.aemet.es/bitstream/20.500.11765/6323/1/HIRLAMSciDoc_Dec2002.pdf.
Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176.
van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland Ice Sheet to sea level change. Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016.
Van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosveld, B. J. J. M. van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI Regional Atmospheric Climate Model RACMO version 2.1. KNMI Tech. Rep. 302, 50 pp., https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR302.pdf.
Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.
Walter, F., J. Chaput, and M. P. Lüthi, 2014: Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics. Geology, 42, 487–490, https://doi.org/10.1130/G35492.1.
Wei, T., Q. Yan, and M. Ding, 2019: Distribution and temporal trends of temperature extremes over Antarctica. Environ. Res. Lett., 14, 084040, https://doi.org/10.1088/1748-9326/ ab33c1.
Wei, T., B. Noël, M. Ding, and Q. Yan, 2022: Spatiotemporal variations of extreme events in surface mass balance over Greenland during 1958–2019. Int. J. Climatol., 42, 8008–8023, https://doi.org/10.1002/joc.7689.
White, P. W., Ed., 2001: Physical processes (CY23R4). ECMWF IFS Doc., 166 pp., https://www.ecmwf.int/sites/default/files/elibrary/2003/77030-ifs-documentation-cy23r4-part-iv-physicalprocesses_1.pdf.
Wong, G. J., E. C. Osterberg, R. L. Hawley, Z. R. Courville, D. G. Ferris, and J. A. Howley, 2015: Coast-to-interior gradient in recent northwest Greenland precipitation trends (1952–2012). Environ. Res. Lett., 10, 114008, https://doi.org/10.1088/17489326/10/11/114008.
Zhang, Q., B. Huai, M. R. van den Broeke, J. Cappelen, M. Ding, Y. Wang, and W. Sun, 2022: Temporal and spatial variability in contemporary Greenland warming (1958–2020). J. Climate, 35, 2755–2767, https://doi.org/10.1175/JCLI-D-21-0313.1.