[en] In Greenland, 87% of the glacierized area terminates in the ocean, but mass lost at the ice‐ocean interface, or frontal ablation, has not yet been fully quantified. Using measurements and models we calculate frontal ablation of Greenland's 213 outlet and 537 peripheral glaciers and find a total frontal ablation of 481.8 ± 24.0 for 2000–2010 and 510.2 ± 18.6 Gt a−1 for 2010–2020. Ice discharge accounted for ∼90% of frontal ablation during both periods, while mass loss due to terminus retreat comprised the remainder. Only 16 glaciers were responsible for the majority (>50%) of frontal ablation from 2010 to 2020. These estimates, along with the climatic‐basal balance, allow for a more complete accounting of Greenland Ice Sheet and peripheral glacier mass balance. In total, Greenland accounted for ∼90% of Northern Hemisphere frontal ablation for 2000–2010 and 2010–2020.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kochtitzky, William ; Department of Geography Environment and Geomatics University of Ottawa Ottawa ON Canada ; School of Marine and Environmental Programs University of New England‐Biddeford Campus Biddeford ME USA
Copland, Luke ; Department of Geography Environment and Geomatics University of Ottawa Ottawa ON Canada
King, Michalea ; Applied Physics Laboratory University of Washington Seattle WA USA
Hugonnet, Romain ; LEGOS Université de Toulouse CNES CNRS IRD UPS Toulouse France ; Laboratory of Hydraulics, Hydrology and Glaciology (VAW) ETH Zürich Zürich Switzerland ; Swiss Federal Institute for Forest Snow and Landscape Research (WSL) Birmensdorf Switzerland
Jiskoot, Hester ; Department of Geography & Environment University of Lethbridge Lethbridge AB Canada
Morlighem, Mathieu ; Department of Earth Sciences Dartmouth College Hanover NH USA
Millan, Romain ; Institut des Géosciences de l'Environnement CNES Grenoble France
Khan, Shfaqat Abbas ; DTU Space Technical University of Denmark Kongens Lyngby Denmark
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Closing Greenland's Mass Balance: Frontal Ablation of Every Greenlandic Glacier From 2000 to 2020
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aschwanden, A., Fahnestock, M. A., & Truffer, M. (2016). Complex Greenland outlet glacier flow captured. Nature Communications, 7, 1–8. https://doi.org/10.1038/ncomms10524
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., & Jackson, R. H. (2020). Future evolution of Greenland's marine-terminating outlet glaciers. Journal of Geophysical Research: Earth Surface, 125(2), 1–28. https://doi.org/10.1029/2018JF004873
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., et al. (2011). Glossary of glacier mass balance and related terms (p. 86). IHP-VII Technical Documents in Hydrology No.
Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., & Grigsby, S. (2016). Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics, 54(1), 119–161. https://doi.org/10.1002/2015RG000504
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: Intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14(11), 3935–3958. https://doi.org/10.5194/tc-14-3935-2020
Gardner, A. S., Fahnestock, M. A., & Scambos, T. A. (2019). ITS_LIVE regional glacier and ice sheet surface velocities. Data archived at National Snow and Ice Data Center. https://doi.org/10.5067/6II6VW8LLWJ7
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., et al. (2020). The future sea-level contribution of the Greenland Ice Sheet: A multi-model ensemble study of ISMIP6. The Cryosphere, 14(9), 3071–3096. https://doi.org/10.5194/tc-14-3071-2020
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., & Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491(7423), 240–243. https://doi.org/10.1038/nature11566
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592, 726–731. https://doi.org/10.1038/s41586-021-03436-z
IPCC. (2021). In V. P. Masson-Delmotte, A. Zhai, S. L. Pirani, C. Connors, S. Péan, N. Berger. et al. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896
Joughin, I., Smith, B., Howat, I., & Scambos, T. (2018). MEaSUREs Greenland ice sheet velocity map from InSAR data, version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/OC7B04ZM9G6Q
Karlsson, N. B., Solgaard, A. M., Mankoff, K. D., Gillet-Chaulet, F., MacGregor, J. A., Box, J. E., et al. (2021). A first constraint on basal melt-water production of the Greenland Ice Sheet. Nature Communications, 12(1), 1–10. https://doi.org/10.1038/s41467-021-23739-z
Khan, S. A., Bamber, J. L., Rignot, E., Helm, V., Aschwanden, A., Holland, D. M., et al. (2022). Greenland mass trends from airborne and satellite altimetry during 2011-2020. Journal of Geophysical Research: Earth Surface, 127(4), 1–20. https://doi.org/10.1029/2021jf006505
Khan, S. A., Sasgen, I., Bevis, M., Van Dam, T., Bamber, J. L., Willis, M., et al. (2016). Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2(9), e1600931. https://doi.org/10.1126/sciadv.1600931
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B. P. Y., et al. (2020). Dynamic ice loss from the Greenland ice sheet driven by sustained glacier retreat. Communications Earth & Environment, 1(1), 1–7. https://doi.org/10.1038/s43247-020-0001-2
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., & Van Den Broeke, M. R. (2018). Seasonal to decadal variability in ice discharge from the Greenland ice sheet. The Cryosphere, 12(12), 3813–3825. https://doi.org/10.5194/tc-12-3813-2018
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., et al. (2015). Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature, 528(7582), 396–400. https://doi.org/10.1038/nature16183
Kochtitzky, W., & Copland, L. (2022). Retreat of northern hemisphere marine-terminating glaciers, 2000–2020. Geophysical Research Letters, 49(3), 1–10. https://doi.org/10.1029/2021gl096501
Kochtitzky, W., Copland, L., Van Wychen, W., Hugonnet, R., Hock, R., Dowdeswell, J. A., et al. (2022). The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000-2020. Nature Communications, 13(1), 5835. https://doi.org/10.1038/s41467-022-33231-x
Krumwiede, B. S., Kamp, U., Leonard, G. J., Kargel, J. S., Dashtseren, A., & Walther, M. (2014). Recent glacier changes in the Mongolian Altai Mountains: Case studies from Munkh Khairkhan and Tavan Bogd. In R. B. Kargel, G. J. Leonard, M. Bishop, & A. Kääb (Eds.), Global land ice measurements from space (pp. 481–508). Springer. https://doi.org/10.1007/978-3-540-79818-7_22
Larsen, P.-H., Hansen, M. O., Buus-Hinkler, J., Krane, K. H., & Sønderskov, C. (2015). Field tracking (GPS) of ten icebergs in eastern Baffin Bay, offshore Upernavik, northwest Greenland. Journal of Glaciology, 61(227), 421–437. https://doi.org/10.3189/2015JoG14J216
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P., Bell, R. E., et al. (2021). The scientific legacy of NASA's operation IceBridge. Reviews of Geophysics, 59(2), e2020RG000712. https://doi.org/10.1029/2020RG000712
Mälicke, M., & Schneider, H. D. (2019). Scikit-GStat 0.2.6: A scipy flavored geostatistical analysis toolbox written in Python. https://doi.org/10.5281/ZENODO.3531816
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., & Fausto, R. S. (2020). Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth System Science Data, 12(2), 1367–1383. https://doi.org/10.5194/essd-12-1367-2020
Matheron, G. (1965). Les variables régionalisées et leur estimation. Une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et Cie.
Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the world's glaciers. Nature Geoscience, 15(2), 124–129. https://doi.org/10.1038/s41561-021-00885-z
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from Multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21), 11051–11061. https://doi.org/10.1002/2017GL074954
Mouginot, J., & Rignot, E. (2019). Glacier catchments/basins for the Greenland ice sheet. Dryad. https://doi.org/10.7280/D1WT11
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., et al. (2019). Forty-six years of Greenland ice sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), 2–11. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016). The Cryosphere, 12(3), 811–831. https://doi.org/10.5194/tc-12-811-2018
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., & Paul, F. (2012). The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere, 6(6), 1483–1495. https://doi.org/10.5194/tc-6-1483-2012
Recinos, B., Maussion, F., Noël, B., Möller, M., & Marzeion, B. (2021). Calibration of a frontal ablation parameterisation applied to Greenland's peripheral calving glaciers. Journal of Glaciology, 67(266), 1177–1189. https://doi.org/10.1017/jog.2021.63
RGI Consortium. (2017). Randolph Glacier inventory – A dataset of global glacier outlines: Version 6.0. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/4m1f-gd79
Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland ice sheet. Science, 311(5763), 986–990. https://doi.org/10.1126/science.1121381
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., et al. (2020). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579(7798), 233–239. https://doi.org/10.1038/s41586-019-1855-2
Velicogna, I., Mohajerani, Y., Geruo, A., Landerer, F., Mouginot, J., Noel, B., et al. (2020). Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE follow-on missions. Geophysical Research Letters, 47(8). https://doi.org/10.1029/2020GL087291
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., et al. (2021). Ocean forcing drives glacier retreat in Greenland. Science Advances, 7(1), 1–11. https://doi.org/10.1126/sciadv.aba7282
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.