Al–Zn–Mg–Cu alloys; Heterogeneous microstructure; High formability; Al-Zn-Mg-Cu alloy; Coupling controls; Gradient distributions; Heterogeneous structures; Iron rich; Micro-domains; Rich phase; Solute gradients; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering; General Materials Science
Abstract :
[en] Here we report a heterogeneous microstructure in Al–Zn–Mg–Cu alloys by coupling control of solute gradient distribution, multiscale iron-rich phases and a novel thermomechanical processing that can produce a greatly improved formability (the average plastic strain ratio r = 0.719). A heterogeneous structure of coarse grains surrounded by fine grains is formed, and an unusual high formability is obtained by the synergy of soft/hard microdomains. The process discovered here is amenable to large-scale automotive industrial production at low cost, and might be applicable to other Al alloy systems.
Disciplines :
Materials science & engineering
Author, co-author :
Yuan, Liangliang; State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China
Guo, Mingxing; State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China ; Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing, China
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Zhuang, Linzhong; State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China ; Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing, China
Language :
English
Title :
Extremely improved formability of Al–Zn–Mg–Cu alloys via micro-domain heterogeneous structure
Publication date :
14 March 2022
Journal title :
Materials Science and Engineering: A: Structural Materials: Properties, Microstructures and Processing
This work was supported by the National Key Research and Development Program of China (No. 2021YFE0115900 ), National Natural Science Foundation of China (Nos. 51871029 , 51571023 and 51301016 ), Government Guided Program-Intergovernmental Bilateral Innovation Cooperation Project (No. BZ2019019 ), the Opening Project of State Key Lab of Advanced Metals and Materials (No. 2020-ZD02 ).
Commentary :
Collaboration lors des contacts pour établir un projet commun. Abandon de cette collaboration par la suite vu la politique Dual Use
Tisza, M., Czinege, I., Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Light. Mater. Manu. 4 (2018), 229–238.
Yuan, L.L., Guo, M.X., Yan, Y., Feng, W.J., Liu, Z.Y., Zhuang, L.Z., Theoretical design and distribution control of precipitates and solute elements in Al-Zn-Mg-Cu alloys with heterostructure. T. Nonferr. Metal Soc. 31 (2021), 3328–3341.
Engler, O., Schafer, C., Brinkman, H.J., Brecht, J., Beiter, P., Nijhof, K., Flexible rolling of aluminium alloy sheet—process optimization and control of materials properties. J. Mater. Process. Technol. 229 (2015), 139–148.
Guo, M.X., Li, G.J., Zhang, Y.D., Sha, G., Zhang, J.S., Zhuang, L.Z., Lavernia, E.J., Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys. Scripta Mater. 159 (2019), 5–8.
Williams, J.C., Starke, E.A., Progress in structural materials for aerospace systems. Acta Mater. 51 (2003), 5775–5799.
Peng, Y.H., Liu, C.Y., Wei, L.L., Quench sensitivity and microstructures of high-Zn-content AlZnMgCu alloys with different Cu contents and Sc addition. T. Nonferr. Metal Soc. 31 (2021), 24–35.
Wei, S.L., Feng, Y., Zhang, H., Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy. J. Cent. South Univ. 28 (2021), 2687–2700.
Hu, J.L., Wu, X.J., Bo, H., Dislocation density model and microstructure of 7A85 aluminum alloy during thermal deformation. J. Cent. South Univ. 28 (2021), 2999–3007.
Yuan, L.L., Guo, M.X., Zhang, J.S., Zhuang, L.Z., Synergy in hybrid multi-scale particles for the improved formability of Al-Zn-Mg-Cu alloys. J. Mater. Res. Technol. 10 (2021), 1143–1157.
Yuan, L.L., Guo, M.X., Yu, K.C., Zhang, J.S., Zhuang, L.Z., Multi-scale iron-rich phases induce fine microstructures in Al-Zn-Mg-Cu-Fe alloys. Philos. Mag. A, 2021, 1–26.
Engler, O., Hirsch, J., Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review. Mater. Sci. Eng., A 336 (2002), 249–262.
Meyers, M.A., Mishra, A., Benson, D.J., Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (2006), 427–556.
Kumar, K.S., Swygenhoven, H.V., Suresh, S., Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51 (2003), 5743–5774.
Yu, Y., Hu, B., Gao, M., Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int. J Min. Met. Mate. 28 (2021), 816–825.
Bae, J.W., Moon, J., Jang, M.J., Yim, D., Kim, D., Lee, S., SeopKim, H., Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy. Mater. Sci. Eng. 703 (2017), 324–330.
Jo, Y.H., Jung, S., Choi, W.M., Sohn, S.S., Kim, H.S., Lee, B.J., Kim, N.J., Lee, S., Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun., 8, 2017, 15719.
Wang, Y.M., Ma, E., Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52 (2004), 1699–1709.
Shao, C.W., Zhang, P., Zhu, Y.K., Zhang, Z.J., Tian, Y.Z., Zhang, Z.F., Simultaneous improvement of strength and plasticity: additional work-hardening from gradient microstructure. Acta Mater. 145 (2018), 413–428.
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., Lu, Z.P., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102 (2016), 187–196.
Lyu, H., Hamid, M., Ruimi, A., Zbib, H.M., Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructures. Int. J. Plast. 97 (2017), 46–63.
She, H., Shu, D., Chu, W., Wang, J., Microstructural aspects of second phases in as-cast and homogenized 7055 aluminum alloy with different impurity contents. Metall. Mater. Trans., 44, 2013, 3504e10.
Kocks, U.F., Mecking, H., Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48 (2003), 171–273.
Shabadi, R., Suwas, S., Kumar, S., Texture and formability studies on AA7020 Al alloy sheets. Mater. Sci. Eng., A 558 (2012), 439–445.
Jeon, J.G., Shin, J.H., Shin, S.E., Improvement in the anisotropic mechanical properties and formability of Al–Si–Mg–Cu-based alloy sheets. Mater. Sci. Eng., A, 799, 2021, 140199.
Dong, G.J., Zhao, C.C., Peng, Y.X., Hot granules medium pressure forming process of AA7075 conical parts. Chin. J. Mech. Eng. 28 (2015), 580–591.
Wang, X.F., Guo, M.X., Chapuis, A., Effect of solution time on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys. Mater. Sci. Eng., A 644 (2015), 137–151.
Chen, Y., Clausen, A.H., Hopperstad, O.S., Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solid Struct. 46 (2009), 3825–3835.
Reyes, A., Hopperstad, O.S., Lademo, O.G., Modeling of textured aluminum alloys used in a bumper system: material tests and characterization. Comput. Mater. Sci. 37 (2006), 246–268.
Tajally, M., Emadoddin, E., Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater. Des. 32 (2011), 1594–1599.
Wang, X., Liu, H., Tang, X., A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol, 118, 2021, 211.
Huang, J.W., Jiang, Y.G., Jiang, F.Q., The improved mechanical anisotropy of a commercial Al-Cu-Mg-Mn-Si aluminum alloy by cross-rolling. Adv. Eng. Mater., 2021, 2100831.
Zhang, C., Zhu, C.Y., Vecchio, K., Non-Equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility. Mater. Sci. Eng. 743 (2018), 361–371.
Zhang, C., Zhu, C.Y., Harrington, T., Vecchio, K., Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy. Scripta Mater. 154 (2018), 78–82.