Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property.
Li, Chong; Li, Shuzhen; Dang, Guoqiet al.
2023 • In Frontiers in Microbiology, 14, p. 1143265
[en] Bacillus spp. have gained increasing recognition as an option to use as antimicrobial growth promoters, which are characterized by producing various enzymes and antimicrobial compounds. The present study was undertaken to screen and evaluate a Bacillus strain with the multi-enzyme production property for poultry production. LB-Y-1, screened from the intestines of healthy animals, was revealed to be a Bacillus velezensis by the morphological, biochemical, and molecular characterization. The strain was screened out by a specific screening program, possessed excellent multi-enzyme production potential, including protease, cellulase, and phytase. Moreover, the strain also exhibited amylolytic and lipolytic activity in vitro. The dietary LB-Y-1 supplementation improved growth performance and tibia mineralization in chicken broilers, and increased serum albumin and serum total protein at 21 days of age (p < 0.05). Besides, LB-Y-1 enhanced the activity of serum alkaline phosphatase and digestive enzyme in broilers at 21 and 42 days of age (p < 0.05). Analysis of intestinal microbiota showed that a higher community richness (Chao1 index) and diversity (Shannon index) in the LB-Y-1 supplemented compared with the CON group. PCoA analysis showed that the community composition and structure were distinctly different between the CON and LB-Y-1 group. The beneficial genera such as Parasutterella and Rikenellaceae were abundant, while the opportunistic pathogen such as Escherichia-Shigella were reduced in the LB-Y-1 supplemented group (p < 0.05). Collectively, LB-Y-1 can be considered as a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Li, Chong ; Université de Liège - ULiège > TERRA Research Centre ; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
Li, Shuzhen; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
Dang, Guoqi ; Université de Liège - ULiège > TERRA Research Centre
Jia, Rui; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
Chen, Si; Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
Deng, Xuejuan; National Engineering Research Center of Biological Feed, Beijing, China
Liu, Guohua; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
Beckers, Yves ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Cai, Huiyi; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China ; National Engineering Research Center of Biological Feed, Beijing, China
Language :
English
Title :
Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property.
This research was funded by China Agriculture Research System (CARS-41).CL gratefully acknowledges financial support from the China Scholarship Council (no. 202103250085).
Babatunde O. O. Bello A. Dersjant-Li Y. Adeola O. (2021). Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. I. Starter phase (day 1-11 post hatching). Poult. Sci. 100:101396. doi: 10.1016/J.PSJ.2021.101396, PMID: 34454357
Bajpai V. K. Han J. H. Rather I. A. Park C. Lim J. Paek W. K. et al. (2016). Characterization and antibacterial potential of lactic acid bacterium Pediococcus pentosaceus 4I1 isolated from freshwater fish Zacco koreanus. Front. Microbiol. 7:2037. doi: 10.3389/FMICB.2016.02037/BIBTEX
Bedford M. R. Schulze H. (1998). Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11, 91–114. doi: 10.1079/NRR19980007, PMID: 19087461
Berrocoso J. D. García-Ruiz A. Page G. Jaworski N. W. (2020). The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days of age. Poult. Sci. 99, 6859–6866. doi: 10.1016/J.PSJ.2020.09.004, PMID: 33248601
Bielke L. R. Hargis B. M. Latorre J. D. (2017). Impact of enteric health and mucosal permeability on skeletal health and lameness in poultry. Adv. Exp. Med. Biol. 1033, 185–197. doi: 10.1007/978-3-319-66653-2_9, PMID: 29101656
Blüher D. Laha D. Thieme S. Hofer A. Eschen-Lippold L. Masch A. et al. (2017). A 1-phytase type III effector interferes with plant hormone signaling. Nat. Commun. 8:2159. doi: 10.1038/S41467-017-02195-8, PMID: 29255246
Chang’a E. P. Abdallh M. E. Ahiwe E. U. Al-Qahtani M. Mbaga S. Iji P. A. (2019). Energy utilization, nutrient digestibility and bone quality of broiler chickens fed Tanzania-type diets in different forms with enzymes. J. Anim. Sci. Technol. 61, 192–203. doi: 10.5187/JAST.2019.61.4.192, PMID: 31452906
Cheng J. Hu J. Geng F. Nie S. (2022). Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Sci. Human Wellness 11, 1101–1110. doi: 10.1016/J.FSHW.2022.04.002
Choi Y. M. Suh H. J. Kim J. M. (2001). Purification and properties of extracellular phytase from bacillus sp. KHU-10. J. Protein Chem. 20, 287–292. doi: 10.1023/A:1010945416862, PMID: 11594462
CLSI. (2015). “Performance Standards For Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement,” in CLSI document M100-S25 (Wayne, PA, USA: Clinical Laboratory Standards Institute). Available at: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=528390 (Accessed 7 July 2022).
Córdova-Noboa H. A. Oviedo-Rondón E. O. Matta Y. Ortiz A. Buitrago G. D. Martinez J. D. et al. (2021). Corn kernel hardness, drying temperature and amylase supplementation affect live performance and nutrient utilization of broilers. Poult. Sci. 100:101395. doi: 10.1016/J.PSJ.2021.101395, PMID: 34455310
Dallas D. C. Sanctuary M. R. Qu Y. Khajavi S. H. Van Zandt A. E. Dyandra M. et al. (2017). Personalizing protein nourishment. Crit. Rev. Food Sci. Nutr. 57, 3313–3331. doi: 10.1080/10408398.2015.1117412, PMID: 26713355
Demirkan E. Baygin E. Usta A. (2014). Screening of phytate hydrolysis bacillus sp. isolated from soil and optimization of the certain nutritional and physical parameters on the production of phytase. Turkish J. Biochem. 39, 206–214. doi: 10.5505/TJB.2014.26817
Diversity T. C. (2022). On B the Nagoya Protocol on Access and Benefit-sharing. Available at: https://www.cbd.int/abs/ (Accessed 7 July 2022).
Donaldson G. P. Lee S. M. Mazmanian S. K. (2016). Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32. doi: 10.1038/NRMICRO3552, PMID: 26499895
Escobar J. Dobbs M. Ellenberger C. Parker A. Latorre J. D. Gabor L. (2022). Oral supplementation of alkaline phosphatase in poultry and swine. Transl. Anim. Sci. 6, 1–10. doi: 10.1093/TAS/TXAC079, PMID: 35795069
Fitzgerald S. Duffy E. Holland L. Morrin A. (2020). Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci. Rep. 10:17971. doi: 10.1038/S41598-020-74909-W, PMID: 33087843
Francino M. P. (2018). Birth mode-related differences in gut microbiota colonization and immune system development. Ann. Nutr. Metab. 73, 12–16. doi: 10.1159/000490842, PMID: 30041189
Gao P. Ma C. Sun Z. Wang L. Huang S. Su X. et al. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome 5:91. doi: 10.1186/s40168-017-0315-1, PMID: 28768551
Gao J. Wang R. Liu J. Wang W. Chen Y. Cai W. (2022). Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult. Sci. 101:101412. doi: 10.1016/J.PSJ.2021.101412, PMID: 34920387
Guo S. Xi Y. Xia Y. Wu T. Zhao D. Zhang Z. et al. (2021). Dietary lactobacillus fermentum and Bacillus coagulans supplementation modulates intestinal immunity and microbiota of broiler chickens challenged by Clostridium perfringens. Front. Vet. Sci. 8:483. doi: 10.3389/FVETS.2021.680742/BIBTEX
Hong Y. Cheng Y. Li Y. Li X. Zhou Z. Shi D. et al. (2019). Preliminary study on the effect of bacillus amyloliquefaciens TL on Cecal bacterial community structure of broiler chickens. Biomed. Res. Int. 2019, 1–11. doi: 10.1155/2019/5431354, PMID: 31687392
Hyronimus B. Le Marrec C. Hadj Sassi A. Deschamps A. (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193–197. doi: 10.1016/S0168-1605(00)00366-4, PMID: 11078170
Ju T. Kong J. Y. Stothard P. Willing B. P. (2019). Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J. 13, 1520–1534. doi: 10.1038/S41396-019-0364-5, PMID: 30742017
Kesari V. Rangan L. (2011). Coordinated changes in storage proteins during development and germination of elite seeds of Pongamia pinnata, a versatile biodiesel legume. AoB Plants. 9, 1–16. doi: 10.1093/AOBPLA/PLR026, PMID: 22476496
Kilkenny C. Browne W. J. Cuthi I. Emerson M. Altman D. G. (2012). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet. Clin. Pathol. 41, 27–31. doi: 10.1111/j.1939-165X.2012.00418.x, PMID: 22390425
Konstantinov S. R. Favier C. F. Zhu W. Y. Williams B. A. Klü J. Souffrant W. B. et al. (2004). Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim. Res. 53, 317–324. doi: 10.1051/ANIMRES:2004019
Kundu P. Blacher E. Elinav E. Pettersson S. (2017). Our gut microbiome: the evolving inner self. Cells 171, 1481–1493. doi: 10.1016/J.CELL.2017.11.024, PMID: 29245010
Latorre J. D. Hernandez-Velasco X. Vicente J. L. Wolfenden R. Hargis B. M. Tellez G. (2017). Effects of the inclusion of a bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poult. Sci. 96, 2728–2735. doi: 10.3382/ps/pex082, PMID: 28419329
Lee J. J. Choe J. Kang J. Cho J. H. Park S. Perez-Maldonado R. et al. (2020). Dietary protease improves growth rate and protein digestibility of growing-finishing pigs. J. Anim. Sci. Technol. 62, 313–320. doi: 10.5187/JAST.2020.62.3.313, PMID: 32568259
Lee Y. J. Kim B. K. Lee B. H. Jo K. I. Lee N. K. Chung C. H. et al. (2008). Purification and characterization of cellulase produced by bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99, 378–386. doi: 10.1016/j.biortech.2006.12.013, PMID: 17320379
Li C. Cai H. Li S. Liu G. Deng X. Bryden W. L. et al. (2022). Comparing the potential of bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poult. Sci. 101:102126. doi: 10.1016/J.PSJ.2022.102126, PMID: 36099660
Li W. Jia M. X. Deng J. Wang J. H. Lin Q. L. Liu C. et al. (2018). Isolation, genetic identification and degradation characteristics of COD-degrading bacterial strain in slaughter wastewater. Saudi J. Biol. Sci. 25, 1800–1805. doi: 10.1016/J.SJBS.2018.08.022, PMID: 30591803
Liu Y. Fu J. Wang L. Zhao Z. Wang H. Han S. et al. (2022). Isolation, identification, and whole-genome sequencing of high-yield protease bacteria from Daqu of ZhangGong Laojiu. PLoS One 17:e0264677. doi: 10.1371/JOURNAL.PONE.0264677, PMID: 35472204
Liu T. Li C. Zhong H. Feng F. (2021). Dietary medium-chain α-monoglycerides increase BW, feed intake, and carcass yield in broilers with muscle composition alteration. Poult. Sci. 100, 186–195. doi: 10.1016/J.PSJ.2020.09.056, PMID: 33357680
Lozupone C. Knight R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005/ASSET/CD76613D-18C6-418B-996A-AB8D3D6CA216/ASSETS/GRAPHIC/ZAM0120562270003.JPEG, PMID: 16332807
Ma Y. Wang W. Zhang H. Wang J. Zhang W. Gao J. et al. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci. Rep. 8:15358. doi: 10.1038/S41598-018-33762-8, PMID: 30337568
Mandal R. K. Jiang T. Al-Rubaye A. A. Rhoads D. D. Wideman R. F. Zhao J. et al. (2016). An investigation into blood microbiota and its potential association with bacterial Chondronecrosis with osteomyelitis (BCO) in broilers. Sci. Rep. 6:25882. doi: 10.1038/SREP25882, PMID: 27174843
Maragkoudakis P. A. Zoumpopoulou G. Miaris C. Kalantzopoulos G. Pot B. Tsakalidou E. (2006). Probiotic potential of lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189–199. doi: 10.1016/J.IDAIRYJ.2005.02.009
Meng Q. Hao J. J. (2017). Optimizing the application of bacillus velezensis BAC03 in controlling the disease caused by Streptomyces scabies. BioControl 62, 535–544. doi: 10.1007/S10526-017-9799-7/FIGURES/5
Mohamed T. M. Sun W. Bumbie G. Z. Elokil A. A. Mohammed K. A. F. Zebin R. et al. (2022). Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front. Microbiol. 12:798350. doi: 10.3389/FMICB.2021.798350, PMID: 35281307
Mohammad B. T. Al Daghistani H. I. Jaouani A. Abdel-Latif S. Kennes C. (2017). Isolation and characterization of thermophilic bacteria from Jordanian Hot Springs: bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int. J. Microbiol. 2017, 1–12. doi: 10.1155/2017/6943952, PMID: 29163641
Mora A. Herrera A. Mamani R. López C. Alonso M. P. Blanco J. E. et al. (2010). Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl. Environ. Microbiol. 76, 6991–6997. doi: 10.1128/AEM.01112-10/ASSET/F65330AF-BED9-47F9-8038-DB2A185C50BC/ASSETS/GRAPHIC/ZAM9991014460002.JPEG, PMID: 20817805
Nikoskelainen S. Ouwehand A. C. Bylund G. Salminen S. Lilius E. M. (2003). Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (lactobacillus rhamnosus). Fish Shellfish Immunol. 15, 443–452. doi: 10.1016/S1050-4648(03)00023-8, PMID: 14550670
Pourabedin M. Guan L. Zhao X. (2015). Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 3:15. doi: 10.1186/S40168-015-0079-4, PMID: 25874109
Ramkumar A. Sivakumar N. Gujarathi A. M. Victor R. (2018). Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: optimization and characterization. Sci. Rep. 8:12442. doi: 10.1038/S41598-018-30155-9, PMID: 30127443
Reuben R. C. Roy P. C. Sarkar S. L. Alam R. U. Jahid I. K. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 19:253. doi: 10.1186/S12866-019-1626-0, PMID: 31718570
Rivera-Pérez W. Barquero-Calvo E. Chaves A. J. (2021). Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poult. Sci. 100:101372. doi: 10.1016/J.PSJ.2021.101372, PMID: 34364120
Ruiz-García C. Béjar V. Martínez-Checa F. Llamas I. Quesada E. (2005). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55, 191–195. doi: 10.1099/IJS.0.63310-0/CITE/REFWORKS
Salem R. El-Habashi N. Fadl S. E. Sakr O. A. Elbialy Z. I. (2018). Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ. Toxicol. Pharmacol. 60, 118–127. doi: 10.1016/J.ETAP.2018.04.015, PMID: 29705371
Salim H. M. Kang H. K. Akter N. Kim D. W. Kim J. H. Kim M. J. et al. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult. Sci. 92, 2084–2090. doi: 10.3382/PS.2012-02947, PMID: 23873556
Segata N. Izard J. Waldron L. Gevers D. Miropolsky L. Garrett W. S. et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18. doi: 10.1186/GB-2011-12-6-R60/FIGURES/6
Shaikh N. M. Patel A. A. Mehta S. A. Patel N. D. (2013). Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of Cellulase production. Univers. J. Environ. Researcg Technol. 3, 39–49. doi: 10.12691/ajmr-9-3-1
Slominski B. A. Meng X. Campbell L. D. Guenter W. Jones O. (2006). The use of enzyme technology for improved energy utilization from full-fat oilseeds Part II: flaxseed. Poult. Sci. 85, 1031–1037. doi: 10.1093/PS/85.6.1031, PMID: 16776472
Stålbrand H. Mansfield S. D. Saddler J. N. Kilburn D. G. Warren R. A. J. Gilkes N. R. (1998). Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi beta-1,4-glucanases. Appl. Environ. Microbiol. 64, 2374–2379. doi: 10.1128/AEM.64.7.2374-2379.1998, PMID: 9647802
Su X. L. Tian Q. Zhang J. Yuan X. Z. Shi X. S. Guo R. B. et al. (2014). Acetobacteroides hydrogenigenes gen. Nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int. J. Syst. Evol. Microbiol. 64, 2986–2991. doi: 10.1099/IJS.0.063917-0, PMID: 24899658
Susanti D. Volland A. Tawari N. Baxter N. Gangaiah D. Plata G. et al. (2021). Multi-omics characterization of host-derived bacillus spp. probiotics for improved growth performance in poultry. Front. Microbiol. 12:3116. doi: 10.3389/FMICB.2021.747845/BIBTEX
Takeshita T. Kageyama S. Furuta M. Tsuboi H. Takeuchi K. Shibata Y. et al. (2016). Bacterial diversity in saliva and oral health-related conditions: the Hisayama study. Sci. Rep. 6:22164. doi: 10.1038/SREP22164, PMID: 26907866
Tavernari F. C. Albino L. F. T. Morata R. L. Dutra Júnior W. M. Rostagno H. S. Viana M. T. S. (2008). Inclusion of sunflower meal, with or without enzyme supplementation, in broiler diets. Brazilian J. Poult. Sci. 10, 233–238. doi: 10.1590/S1516-635X2008000400007
Tilgar V. Kilgas P. Viitak A. Reynolds S. J. (2008). The rate of bone mineralization in birds is directly related to alkaline phosphatase activity. Physiol. Biochem. Zool. 81, 106–111. doi: 10.1086/523305, PMID: 18040977
Tun H. M. Bridgman S. L. Chari R. Field C. J. Guttman D. S. Becker A. B. et al. (2018). Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172, 368–377. doi: 10.1001/JAMAPEDIATRICS.2017.5535, PMID: 29459942
Viveros A. Brenes A. Arija I. Centeno C. (2002). Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 81, 1172–1183. doi: 10.1093/PS/81.8.1172, PMID: 12211310
Wang Y. Heng C. Zhou X. Cao G. Jiang L. Wang J. et al. (2021). Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br. J. Nutr. 125, 494–507. doi: 10.1017/S0007114520002755, PMID: 32693847
Yang W. Y. Lee Y. Lu H. Chou C. H. Wang C. (2019). Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One 14:e0205784. doi: 10.1371/JOURNAL.PONE.0205784, PMID: 31150394
Yang F. Zhang S. Tian M. Chen J. Chen F. Guan W. (2020). Different sources of high fat diet induces marked changes in gut microbiota of nursery pigs. Front. Microbiol. 11:859. doi: 10.3389/FMICB.2020.00859, PMID: 32457725
Ye M. Sun L. Yang R. Wang Z. Qi K. (2017). The optimization of fermentation conditions for producing cellulase of bacillus amyloliquefaciens and its application to goose feed. R. Soc. Open Sci. 4:171012. doi: 10.1098/RSOS.171012, PMID: 29134097
Zhai S. S. Tian L. Zhang X. F. Wang H. Li M. M. Li X. C. et al. (2020). Effects of sources and levels of liquor distiller’s grains with solubles on the growth performance, carcass characteristics, and serum parameters of Cherry Valley ducks. Poult. Sci. 99, 6258–6266. doi: 10.1016/J.PSJ.2020.07.025, PMID: 33142544
Zhang Y. C. Luo M. Fang X. Y. Zhang F. Q. Cao M. H. (2021). Energy value of rice, broken rice, and rice bran for broiler chickens by the regression method. Poult. Sci. 100:100972. doi: 10.1016/J.PSJ.2020.12.069, PMID: 33588342
Zhang D. F. Xiong X. L. Wang Y. J. Gao Y. X. Ren Y. Wang Q. et al. (2021). Bacillus velezensis WLYS23 strain possesses antagonistic activity against hybrid snakehead bacterial pathogens. J. Appl. Microbiol. 131, 3056–3068. doi: 10.1111/JAM.15162, PMID: 34037300
Zhang Q. Zhang S. Wu S. Madsen M. H. Shi S. (2022). Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids, especially butyric acid. J. Anim. Sci. Biotechnol. 13:97. doi: 10.1186/S40104-022-00749-5, PMID: 36071469