Bayesian inference of high-dimensional finite-strain visco-elastic-visco-plastic model parameters for additive manufactured polymers and neural network based material parameters generator
Wu, Ling; Anglade, Cyrielle; Cobian, Luciaet al.
2023 • In International Journal of Solids and Structures, 283, p. 112470
Applied Mathematics; Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; Modeling and Simulation
Abstract :
[en] In this work, the parameters of a finite-strain visco-elastic-visco-plastic formulation with pressure dependency in both the visco-elastic and visco-plastic parts are identified using as observations experimental data obtained from tension and compression tests at different strain rates ranging from 10^-4 s^-1 to 10^3 s^-1 . Because of the high number of parameters of the model, a sequential Bayesian Inference (SBI) framework with data augmentation, which presents several advantages, is developed. First the sequential nature reduces the difficulty of selecting the appropriate prior distributions by considering only parts of the observations at a time. Second, the sequential nature prevents dealing with low likelihood values by considering only a part of the experimental observations at a time, but also subsets of the material parameters to be identified, improving the convergence of the Markov Chain Monte Carlo (MCMC) random walk. Third, the data augmentation allows considering different number of experimental tests in tension and in compression while preserving the identified model accuracy for both loading modes.
This SBI is carried out to infer the properties of Polyamide 12 (PA12) processed by Selective Laser Sintering (SLS) for two different printing directions and it is shown that the models fed by their respective set of inferred parameters can reproduce the different experimental tests.
Finally, in order for upcoming structural simulations to benefit from the information related to the uncertainties due to the measurement errors, the identification process and the model limitations, we introduce a Generative Adversarial Network (GAN), which is trained using the data obtained from MCMC random walk. This generators can then serve to produce a synthetic data-set of arbitrary size of the material parameters to be used in finite-element simulations.
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Anglade, Cyrielle
Cobian, Lucia
Monclus, Miguel
Segurado, Javier
Karayagiz, Fatma
Freitas, Ubiratan
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Bayesian inference of high-dimensional finite-strain visco-elastic-visco-plastic model parameters for additive manufactured polymers and neural network based material parameters generator
NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Solids and Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Solids and Structures 283 (2023) 112470, DOI: 10.1016/j.ijsolstr.2023.112470
Ajoku, U., Saleh, N., Hopkinson, N., Hague, R., Erasenthiran, P., Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts. Proc. Inst. Mech. Eng. B 220:7 (2006), 1077–1086.
Beck, J.L., Katafygiotis, L.S., Updating models and their uncertainties. I: Bayesian statistical framework. J. Eng. Mech. 124 (1998), 455–461.
Bishop, C.M., Pattern Recognition and Machine Learning Information Science and Statistics, 2006, Springer-Verlag, New York, USA.
Bogdanor, M.J., Mahadevan, S., Oskay, C., Uncertainty quantification in damage modeling of heterogeneous materials. Int. J. Multiscale Comput. Eng. 11:3 (2013), 289–307, 10.1615/IntJMultCompEng.2013005821.
Bogdanor, M.J., Oskay, C., Clay, S.B., Multiscale modeling of failure in composites under model parameter uncertainty. Comput. Mech. 56:3 (2015), 389–404, 10.1007/s00466-015-1177-7.
Bourell, D.L., Marcus, H.L., Barlow, J.W., Beaman, J.J., Selective laser sintering of metals and ceramics. Int J Powder Metall (Princeton, New Jersey) 28:4 (1992), 369–381 Cited by: 281.
Caulfield, B., McHugh, P., Lohfeld, S., Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater Process. Technol. 182:1 (2007), 477–488, 10.1016/j.jmatprotec.2006.09.007 URL https://www.sciencedirect.com/science/article/pii/S0924013606007886.
Chapiro, M., Current achievements and future outlook for composites in 3D printing. Reinf. Plast. 60:6 (2016), 372–375, 10.1016/j.repl.2016.10.002 URL https://www.sciencedirect.com/science/article/pii/S0034361716303551.
Chen, Z., Jin, P., Li, R., Qi, Y., Cai, G., Parameter identification of elastoplastic model for CuCrZr alloy by the neural network-aided Bayesian inference. Fatigue Fract. Eng. Mater. Struct. 46:6 (2023), 2319–2337, 10.1111/ffe.14000 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/ffe.14000.
Cobian, L., Rueda-Ruiz, M., Fernandez-Blazquez, J., Martinez, V., Galvez, F., Karayagiz, F., Lück, T., Segurado, J., Monclus, M., Micromechanical characterization of the material response in a PA12-SLS fabricated lattice structure and its correlation with bulk behavior. Polym. Test., 110, 2022, 107556, 10.1016/j.polymertesting.2022.107556.
de Pablos, J.L., Sabirov, I., Romero, I., An experimental, computational, and statistical strategy for the Bayesian calibration of complex material models. Arch. Comput. Methods Eng., 2023, 10.1007/s11831-023-09888-y.
Faes, M., Wang, Y., Lava, P., Moens, D., Variability in the mechanical properties of laser sintered PA-12 components. 2015 International Solid Freeform Fabrication Symposium, 2015, University of Texas at Austin.
Ferry, J.D., Viscoelastic Properties of Polymers. 1980, John Wiley & Sons.
Georgios, B., Benedikt, K., Raimund, R., Data-driven inverse uncertainty quantification in the transverse tensile response of carbon fiber reinforced composites. Compos. Sci. Technol., 211, 2021, 108845, 10.1016/j.compscitech.2021.108845 URL https://www.sciencedirect.com/science/article/pii/S0266353821002013.
Gilks, W., Richardson, S., Spiegelhalter, D., Markov chain Monte Carlo in practice. Chapman & Hall/CRC Interdisciplinary Statistic, 1995, Chapman and Hall, Weinheim, Germany.
Haario, H., Saksman, E., Tamminen, J., Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist. 14:3 (1999), 375–395, 10.1007/s001800050022.
Haward, R.N., The Physics of Glassy Polymers. 2012, Springer Science & Business Media.
Hernandez, W., Borges, F., Castello, D., Roitman, N., Magluta, C., 2015. Bayesian Inference Applied on Model Calibration of a Fractional Derivative Viscoelastic Model. In: DINAME 2015 - Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics.
Isenberg, J., 1979. Progressing from least squares to Bayesian estimation. In: ASME (Ed.), Proceedings of the 1979 ASME Design Engineering Technical Conference. New York, USA, pp. 71–82.
Koutsourelakis, P.-S., A novel Bayesian strategy for the identification of spatially varying material properties and model validation: An application to static elastography. Internat. J. Numer. Methods Engrg. 91:3 (2012), 249–268, 10.1002/nme.4261.
Lammens, N., Kersemans, M., De Baere, I., Van Paepegem, W., On the visco-elasto-plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering. Polym. Test. 57 (2017), 149–155, 10.1016/j.polymertesting.2016.11.032 URL https://www.sciencedirect.com/science/article/pii/S0142941816310315.
Madireddy, S., Sista, B., Vemaganti, K., A Bayesian approach to selecting hyperelastic constitutive models of soft tissue. Comput. Methods Appl. Mech. Engrg. 291 (2015), 102–122, 10.1016/j.cma.2015.03.012.
Melro, A., Camanho, P., Andrade Pires, F., Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I – constitutive modelling. Int. J. Solids Struct. 50:11 (2013), 1897–1905, 10.1016/j.ijsolstr.2013.02.009 URL https://www.sciencedirect.com/science/article/pii/S0020768313000747.
Miled, B., Doghri, I., Delannay, L., Coupled viscoelastic–viscoplastic modeling of homogeneous and isotropic polymers: Numerical algorithm and analytical solutions. Comput. Methods Appl. Mech. Engrg. 200:47 (2011), 3381–3394, 10.1016/j.cma.2011.08.015 URL https://www.sciencedirect.com/science/article/pii/S0045782511002702.
Mohamedou, M., Uriondo, K.Z., Chung, C.N., Rappel, H., Beex, L., Adam, L., Major, Z., Wu, L., Noels, L., Bayesian identification of mean-field homogenization model parameters and uncertain matrix behavior in non-aligned short fiber composites. Compos. Struct., Submitted, 2019.
Moran, B., Ortiz, M., Shih, C.F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Internat. J. Numer. Methods Engrg. 29:3 (1990), 483–514, 10.1002/nme.1620290304 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620290304.
Most, T., Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating. Straub, D., (eds.) Reliability and Optimization of Structural Systems, 2010.
Nguyen, V.-D., Lani, F., Pardoen, T., Morelle, X., Noels, L., A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. J. Solids Struct. 96 (2016), 192–216, 10.1016/j.ijsolstr.2016.06.008 URL https://www.sciencedirect.com/science/article/pii/S0020768316301238.
Paranjape, H.M., Aycock, K.I., Bonsignore, C., Weaver, J.D., Craven, B.A., Duerig, T.W., A probabilistic approach with built-in uncertainty quantification for the calibration of a superelastic constitutive model from full-field strain data. Comput. Mater. Sci., 192, 2021, 110357, 10.1016/j.commatsci.2021.110357 URL https://www.sciencedirect.com/science/article/pii/S0927025621000823.
Perzyna, P., Thermodynamic theory of viscoplasticity. Yih, C.-S., (eds.) Advances in Applied Mechanics, vol. 11, 1971, Elsevier, 313–354, 10.1016/S0065-2156(08)70345-4 URL https://www.sciencedirect.com/science/article/pii/S0065215608703454.
Rappel, H., Beex, L.A.A., Bordas, S.P.A., Bayesian inference to identify parameters in viscoelasticity. Mech. Time-Dependent Mater. 22:2 (2018), 221–258, 10.1007/s11043-017-9361-0.
Rappel, H., Beex, L., Hale, J., Noels, L., Bordas, S., A tutorial on Bayesian inference to identify material parameters in solid mechanics. Arch. Comput. Methods Eng., 2019, 10.1007/s11831-018-09311-x.
Rappel, H., Beex, L., Noels, L., Bordas, S., Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty. Probab. Eng. Mech. 55 (2019), 28–41, 10.1016/j.probengmech.2018.08.004.
Schneider, J., Kumar, S., Multiscale characterization and constitutive parameters identification of polyamide (PA12) processed via selective laser sintering. Polym. Test., 86, 2020, 106357, 10.1016/j.polymertesting.2020.106357 URL https://www.sciencedirect.com/science/article/pii/S0142941819320860.
Seltzer, R., de la Escalera, F.M., Segurado, J., Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering. Mater. Sci. Eng. A 528:22–23 (2011), 6927–6933.
Simo, J.-C., On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Engrg. 60:2 (1987), 153–173, 10.1016/0045-7825(87)90107-1 URL https://www.sciencedirect.com/science/article/pii/0045782587901071.
Sindinger, S.-L., Kralovec, C., Tasch, D., Schagerl, M., Thickness dependent anisotropy of mechanical properties and inhomogeneous porosity characteristics in laser-sintered polyamide 12 specimens. Addit. Manuf., 33, 2020, 101141.
Soize, C., Ghanem, R., Data-driven probability concentration and sampling on manifold. J. Comput. Phys. 321 (2016), 242–258, 10.1016/j.jcp.2016.05.044 URL https://www.sciencedirect.com/science/article/pii/S0021999116301899.
Starr, T.L., Gornet, T.J., Usher, J.S., The effect of process conditions on mechanical properties of laser-sintered nylon. Rapid Prototyp. J. 17:6 (2011), 418–423.
Vigliotti, A., Csányi, G., Deshpande, V., Bayesian inference of the spatial distributions of material properties. J. Mech. Phys. Solids 118 (2018), 74–97, 10.1016/j.jmps.2018.05.007.
Ward, I.M., Determination of molecular orientation by spectroscopic techniques. Kaush, H.H., Zachman, H.G., (eds.) Characterization of Polymers in the Solid State I: Part a: NMR and Other Spectroscopic Methods Part B: Mechanical Methods, 1985, Springer Berlin Heidelberg, Berlin, Heidelberg, 81–115.
Wu, L., Anglade, C., Cobian, L., Monclus, M., Segurado, J., Karayagiz, F., Freitas, U., Noels, L., Data of “Bayesian Inference of High-Dimensional Finite-Strain Visco-Elastic-Visco-Plastic Model Parameters for Additive Manufactured Polymers and Neural Network Based Material Parameters Generator”. 2023, Zenodo, 10.5281/zenodo.7792804.
Wu, L., Nguyen, V.-D., Adam, L., Noels, L., An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. Comput. Methods Appl. Mech. Engrg. 348 (2019), 97–138, 10.1016/j.cma.2019.01.016 URL https://www.sciencedirect.com/science/article/pii/S0045782519300210.
Wu, L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput. Methods Appl. Mech. Engrg., 360, 2020, 112693, 10.1016/j.cma.2019.112693 URL https://www.sciencedirect.com/science/article/pii/S004578251930578X.