An Advanced One-Step RT-LAMP for Rapid Detection of Little cherry virus 2 Combined with High-Throughput Sequence-Based Phylogenomics Reveal Divergent Flowering Cherry Isolates.
[en] Little cherry virus 2 (LChV-2, genus Ampelovirus) is considered to be the main causal agent of the economically damaging little cherry disease, which can only be controlled by removal of infected trees. The widespread viral disease of sweet cherry (Prunus avium L.) is affecting the survival of long-standing orchards in North America and Europe, hence the dire need for an early and accurate diagnosis to establish a sound disease control strategy. The endemic presence of LChV-2 is mainly confirmed using laborious time-consuming reverse-transcription (RT-PCR). A rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting a conserved region of the coat protein was developed and compared with conventional RT-PCR for the specific detection of LChV-2. This affordable assay, combined with a simple RNA extraction, deploys desirable characteristics such as higher ability for faster (<15 min), more analytically sensitive (100-fold), and robust broad-range diagnosis of LChV-2 isolates from sweet cherry, ornamental flowering cherry displaying heterogenous viral etiology and, for the first time, newly identified potential insect vectors. Moreover, use of Sanger and total RNA high-throughput sequencing as complementary metaviromics approaches confirmed the LChV-2 RT-LAMP detection of divergent LChV-2 isolates in new hosts and the relationship of their whole-genome was exhaustively inferred using maximum-likelihood phylogenomics. This entails unprecedented critical understanding of a novel evolutionary clade further expanding LChV-2 viral diversity. In conclusion, this highly effective diagnostic platform facilitates strategical support for early in-field testing to reliably prevent dissemination of new LChV-2 outbreaks from propagative plant stocks or newly postulated insect vectors. Validated results and major advantages are herein thoroughly discussed, in light of the knowledge required to increase the potential accuracy of future diagnostics and the essential epidemiological considerations to proactively safeguard cherries and Prunus horticultural crop systems from little cherry disease.
Disciplines :
Biotechnology
Author, co-author :
Tahzima, Rachid ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
Foucart, Yoika; Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
Peusens, Gertie; Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
Massart, Sébastien ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Beliën, Tim; Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
De Jonghe, Kris ; Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
Language :
English
Title :
An Advanced One-Step RT-LAMP for Rapid Detection of Little cherry virus 2 Combined with High-Throughput Sequence-Based Phylogenomics Reveal Divergent Flowering Cherry Isolates.
Funding: This work was supported by the Federal Flemish Agency for Innovation and Entrepreneurship (Agentschap Innoveren en Ondernemen) under grant no. IWT LA-140967.
Adams, I. P., Fox, A., Boonham, N., Massart, S., and De Jonghe, K. 2018. The impact of high-throughput sequencing on plant health diagnostics. Eur. J. Plant Pathol. 152:909-919.
Al Rwahnih, M., Daubert, S., Golino, D., Islas, C., and Rowhani, A. 2015. Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 105: 758-763.
Bajet, N. B., Unruh, T. R., Druffel, K. L., and Eastwell, K. C. 2008. Occurrence of two Little cherry viruses in Sweet cherry in Washington State. Plant Dis. 92:234-238.
Blodgett, E. C., Williams, H. E., Reeves, E. L., and Wright, C. M. 1950. Survey of Western X Little Cherry and Western X Disease for 1949. Washington State Department of Agriculture, Olympia, WA.
Bonants, P., Griekspoor, Y., Houwers, I., Krijger, M., Van der Zouwen, P., and Van der Lee, T. 2019. Development and evaluation of a triplex TaqMan assay and next-generation sequence analysis for improved detection of Xylella in plant material. Plant Dis. 103:645-655.
Boonham, N., Glover, R., Tomlinson, J., and Mumford, R. 2008. Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur. J. Plant Pathol. 121:355-363.
Boubourakas, I. N., Fukuta, S., and Kyriakopoulou, P. E. 2009. Sensitive and rapid detection of Peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 160:63-68.
Budziszewska, M., Wieczorek, P., and Obrepalaska-Steplowska, A. 2016. One-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of Tomato torrado virus. Arch. Virol. 161:1359-1364.
Candresse, T., Cambra, M., Dallot, M., Lanneau, M., Asensio, M., Gorris, M. T., Revers, F., Macquaire, G., Olmos, A., Boscia, D., Quiot, J. B., and Dunez, J. 1998. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology 88:198-204.
Congdon, B., Matson, P., Begum, F., Kehoe, M., and Coutts, B. 2019. Application of loop-mediated isothermal amplification in an early warning system for epidemics of an externally sourced plant virus. Plants 8:139.
Diaz-Lara, A., Stevens, K., Klaassen, V., Golino, D., and Al Rwahnih, M. 2020. Comprehensive real-time RT-PCR assays for the detection of fifteen viruses infecting Prunus spp. Plants 9:273.
Eastwell, K. C., and Bernardy, M. G. 2001. Partial characterization of a Closterovirus associated with apple mealybug-transmitted Little Cherry disease in north America. Phytopathology 91:268-273.
Eastwell, K. C., Bernardy, M., and Li, T. S. C. 1996. Comparison between woody indexing and a rapid hybridization assay for the diagnosis of Little Cherry disease in cherry trees. Ann. Appl. Biol. 128:269-277.
European and Mediterranean Plant Protection Organisation (EPPO). 2007. PM 7/84 (1). Basic requirements for quality management in plant pest diagnosis laboratories. OEPP/EPPO Bull. 37:580-588.
European and Mediterranean Plant Protection Organisation. 2007. PM 7/84 (1) Basic requirements for quality management in plant pest diagnosis laboratories. OEPP/EPPO Bull. 37:580-588.
European Food Safety Authority. 2017. Pest categorization of Little Cherry pathogen (non-EU isolates). EFSA J. 15:4926.
Eppler, A. 1998. Little Cherry disease in northern Germany. Announcements from the Faculty of Agricultural and Applied Biological Sciences [Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen], University of Ghent, Ghent, Belgium. 867-868. (In Flemish.)
Fan, X., Dong, Y., Zhan, Z. P., Ren, F., Hu, G., and Zhou, J. 2015. Detection and sequence analysis of Grapevine leafroll-associated virus 2 isolates from China. J. Phytopathol. 163:978-986.
Foster, W. R., and Lott, T. B. 1947. “Little Cherry,” a virus disease. Sci. Agric. 27:1-5.
Foster, W. R., Lott, T. B., and Welsh, M. F. 1951. Little cherry. Pages 126-129 in: Virus Diseases and Other Disorders with Viruslike Symptoms of Stone Fruits in North America. Agriculture Handbook No. 10. U.S. Department of Agriculture, Washington, DC.
Foster, W. R., and MacSewan, I. C. 1949. Report of the Provincial Plant Pathologist. Brit. Columbia Dept. Agric. 44th Ann. Rept. 44:W83-W88.
Francois, P., Tangomo, M., Hibbs, J., Bonetti, E. J., Boehme, C. C., Notomi, T., Perkins, M. D., and Schrenzel, J. 2011. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 62:41-48.
Fu, S., Qu, G., Guo, S., Ma, L., Zhang, N., Zhang, S., Gao, S., and Shen, Z. 2011. Applications of loop-mediated isothermal DNA amplification. Appl. Biochem. Biotechnol. 163:845-850.
Fuchs, M., Bar-Joseph, M., Candresse, T., Maree, H. J., Martelli, G. P., Melzer, M. J., Menzel, W., Minafra, A., and Sabanadzovic, S., and ICTV Report Consortium. 2020. ICTV virus taxonomy profile: Closteroviridae. J. Gen. Virol. 101:364-365.
Fukuta, S., Iida, T., Mizukami, Y., Ishida, A., Ueda, J., and Kanbe, M. 2003a. Detection of Japanese Yam mosaic virus by RT-LAMP. Arch. Virol. 148: 1713-1720.
Fukuta, S., Kato, S., Yoshida, K., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M., and Ishimoto, Y. 2003b. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J. Virol. Methods 112:35-40.
Fukuta, S., Tamura, M., Maejima, H., Takahashi, R., Kuwayama, S., Tsuji, T., Yoshida, T., Itoh, K., Hashizume, H., Nakajima, Y., Uehara, Y., and Shirako, Y. 2013. Differential detection of Wheat yellow mosaic virus, Japanese soil-borne wheat mosaic virus and Chinese wheat mosaic virus by reverse transcription loop-mediated isothermal amplification reaction. J. Virol. Methods 189:348-354.
Galinato, S. P., Gallardo, K. R., Beers, E. H., and Bixby-Brosi, A. J. 2019. Developing a management strategy for Little Cherry disease: The case of Washington State. Plant Dis. 103:2184-2190.
García-Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., and Hardy, N. B. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database 2016:bav118.
Hadersdorfer, J., Neumuller, M., Treutter, D., and Fischer, T. C. 2011. Fast and reliable detection of Plum pox virus in woody host plants using the Blue LAMP protocol. Ann. Appl. Biol. 159:456-466.
Hadidi, A., Barba, M., Candresse, T., and Jelkman, W., eds. 2011. Page 429 in: Virus and Virus-like Diseases of Pome and Stone Fruits. American Phytopathological Society Press, St Paul, MN.
Harper, S. J., Ward, L. I., and Clover, G. R. G. 2010. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100:1282-1288.
He, L., and Xu, H. 2011. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of White spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp. Aquaculture 311:94-99.
Iseki, H., Alhassan, A., Ohta, N., Thekisoe, O. M. M., Yokoyama, N., Inoue, N., Nambota, A., Yasuda, J., and Igarashi, I. 2007. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J. Microbiol. Methods 71:281-287.
Isogai, M., Aoyagi, J., Nakagawa, M., Kubodera, Y., Satoh, K., Katoh, T., Inamori, M., Yamashita, K., and Yoshikawa, N. 2004. Molecular detection of five cherry viruses from Sweet cherry trees in Japan. J. Gen. Plant Pathol. 70:288-291.
Jelkmann, W. 1995. Cherry virus A: cDNA cloning of dsRNA, nucleotide sequence analysis and serology reveal a new plant capillovirus in sweet cherry. Gen. Virol. 76:2015-2024.
Jelkmann, W., and Eastwell, K. C. 2011. Little cherry virus-1 and -2. Chapter 31 in: Virus and Virus-like Diseases of Pome and Stone Fruits. A. Hadidi, M. Barba, T. Candresse, and W. Jelkman, eds. APS Press, St. Paul, MN.
Jelkmann, W., Fechter, B., and Agranovsky, A. A. 1997. Complete genome structure and phylogenetic analysis of Little cherry virus, a mealybug-transmissible closterovirus. J. Gen. Virol. 78:2067-2071.
Jelkmann, W., Leible, S., and Rott, M. 2008. Little cherry closteroviruses-1 and -2, their genetic variability and detection by real-time-PCR. Acta Hortic. 781:321-330.
Karasev, A. V. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293-324.
Katsiani, A., Maliogka, V. I., Amoutzias, G. D., Efthimiou, K. E., and Katis, N. I. 2015. Insights into the genetic diversity and evolution of Little cherry virus 1. Plant Pathol. 64:817-824.
Keim-Konrad, R., and Jelkmann, W. 1996. Genome analysis of the 30-terminal part of the Little Cherry disease associated dsRNA reveals a monopartite Clostero-like virus. Arch. Virol. 141:1437-1451.
Khan, M., Wang, R., Li, B., Liu, P., Weng, Q., and Chen, Q. 2018. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front. Microbiol. 9:2089.
Komorowska, B., and Cieslinska, M. 2008. First report of Little cherry virus 2 from Sweet cherry in Poland. Plant Dis. 92:1366.
Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
Lenarčič, R., Morisset, D., Mehle, N., and Ravnikar, M. 2013. Fast real-time detection of Potato spindle tuber viroid by RT-LAMP. Plant Pathol. 62: 1147-1156.
Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., and Kinard, G. 2013. A reliable and inexpensive method of nucleic acid extraction for PCR-based detection of diverse plant pathogens. J. Virol. Methods 145:48-55.
Lu, C., Song, B., Zhang, H., Wang, Y., and Zheng, X. 2015. Rapid diagnosis of soybean seedling blight caused by Rhizoctonia solani and soybean charcoal rot caused by Macrophomina phaseolina using LAMP assays. Phytopathology 105:1612-1617.
Marais, A., Faure, C., and Candresse, T. 2016. New insights into Asian Prunus viruses in the light of NGS-based full genome sequencing. PLoS One 11: e0146420.
Maree, H. J., Fox, A., Al Rwahnih, M., Boonham, N., and Candresse, T. 2018. Application of HTS for routine plant virus diagnostics: State of the art and challenges. Front. Plant Sci. 9:1082.
Martelli, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Candresse, T., Coutts, R. H. A., Dolja, V. V., Falk, B. W., Gonsalves, D., Jelkmann, W., Karasev, A. V., Minafra, A., Namba, S., Vetten, H. J., Wisler, G. C., and Yoshokawa, N. 2002. The family Closteroviridae revised. Arch. Virol. 147: 2039-2044.
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., and Dandekar, A. M. 2015. Advanced methods of plant disease detection: A review. Agron. Sustain. Dev. 35:1-25.
Massart, S., Candresse, T., Gil, J., Lacomme, C., Predajna, L., Ravnikar, M., Reynard, J. S., Rumbou, A., Saldarelli, P., Škoric, D., Vainio, E. J., Valkonen, J. P. T., Vanderschuren, H., Varveri, C., and Wetzel, T. 2017. A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Front. Microbiol. 8:45.
Massart, S., Olmos, A., Jijakli, H., Candresse, T., Olmos, A., Jijakli, H., and Candresse, T. 2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 188:90-96.
Matić, S., Minafra, A., Sanchez-Navarro, J. A., Pallas, V., Myrta, A., and Martelli, G. P. 2009. Kwanzan stunting syndrome: detection and molecular characterization of an Italian isolate of Little cherry virus 1. Virus Res. 143:61-67.
Mekuria, T. A., Zhang, S., and Eastwell, K. C. 2014. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J. Virol. Methods 205:24-30.
Milbrath, J. A., and Williams, H. E. 1956. A decline of sour cherry caused by a virus of the Little Cherry type. Phytopathology 46:535-537.
Mori, Y., Nagamine, K., Tomita, N., and Notomi, T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289: 150-154.
Nagamine, K., Hase, T., and Notomi, T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16: 223-229.
Nassuth, A., Pollari, E., Helmeczy, K., Stewart, S., and Kofalvi, S. A. 2000. Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J. Virol. Methods 90:37-49.
Ng, J. C., and Falk, B. 2006. Virus-vector interactions mediating non-persistent and semipersistent transmission of plant viruses. Ann. Rev. Phytopathol. 44: 183-212.
Nie, X. 2005. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Dis. 89:605-610.
Notomi, T., Mori, Y., Tomita, N., and Kanda, H. 2015. Loop-mediated isothermal amplification (LAMP): Principle, features and future prospects. J. Microbiol. 53:1-5.
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanebe, K., Amino, N., and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:63e.
Okiro, L. A., Tancos, M. A., Nyanjom, S. G., Smart, C. D., and Parker, M. 2019. Comparative evaluation of LAMP, qPCR, conventional PCR, and ELISA to detect Ralstonia solanacearum in Kenyan Potato fields. Plant Dis. 103:959-965.
Okuda, M., Matsumoto, M., Tanaka, Y., Subandiyah, S., and Iwanami, T. 2005. Characterization of the tufB-secE-nusG-rplKAJL-rpoB gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Dis. 89:705-711.
Okuda, M., Okuda, S., and Iwai, H. 2015. Detection of Cucurbit chlorotic yellows virus from Bemisia tabaci captured on sticky traps using reverse transcription loop-mediated isothermal amplification (RT-LAMP) and a simple template preparation. J. Virol. Methods 221:9-14.
Panno, S., Matić, S., Tiberini, A., Caruso, A. G., Bella, P., Torta, L., Stassi, R., and Davino, A. S. 2020. Loop-mediated isothermal amplification: principles and applications in plant virology. Plants 9:461.
Park, J., Jung, Y., Kil, E.-J., Kim, J., Thi Tran, D., Choi, S.-K., Yoon, J.-Y., Cho, W. K., and Lee, S. 2013. Loop-mediated isothermal amplification for the rapid detection of Chrysanthemum chlorotic mottle viroid (CChMVd). J. Virol. Methods 193:232-237.
Peusens, G., Tahzima, R., De Jonghe, K., and Beliën, T. 2017. Monitoring of vectors Phenacoccus aceris and Pseudococcus maritimus of Little cherry virus 2 in sweet cherry orchards in Belgium. In: Proceedings of the 24th International Conference on Virus and Other Transmissible Diseases of Fruit Crops (ICVF), Thessaloniki, Greece.
Posnette, A. 1965. Detection of Little Cherry virus disease in Europe. Zast. Bilja 16:431-434.
Przewodowska, A., Zacharzewska, B., Chołuj, J., and Treder, K. 2015. A one-step, real-time reverse transcription loop-mediated isothermal amplification assay to detect Potato virus Y. Am. J. Potato Res. 92:303-311.
Raine, J., McMullen, R., and Forbes, A. 1986. Transmission of the agent causing Little Cherry disease by the apple mealybug Phenacoccus aceris and the dodder Cuscuta lupuliformis. Can. J. Plant Pathol. 8:6-11.
Rao, W. L., Li, F., Zuo, R. J., and Li, R. 2011. First report of Little cherry virus 2 in Flowering and Sweet cherry trees in China. Plant Dis. 95:1484.
Reeves, E. L., Cheney, P. W., and Milbrath, J. A. 1955. Normal appearing Kwanzan and Shirofugen Oriental flowering cherries found to carry a virus of Little Cherry type. Plant Dis. 39:725-726.
Rott, M. E., and Jelkmann, W. 2001. Detection and partial characterization of a second closterovirus associated with Little Cherry disease, Little cherry virus-2. Phytopathology 91:261-267.
Rott, M. E., and Jelkmann, W. 2004. Little cherry virus-2: Sequence and genomic organization of an unusual member of the Closteroviridae. Arch. Virol. 150:107-123.
Rubio, L., Galipienso, L., and Ferriol, I. 2020. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 11:1092.
Sarkes, A., Fu, H., Feindel, D., Harding, M., and Feng, J. 2020. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose fruit virus (ToBRFV). PLoS One 15:e0230403.
Shen, W., Tuo, D., Yan, P., Li, X.-Y., and Zhou, P. 2014. Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification. J. Virol. Methods 195:174-179.
Silva, G., Bömer, M., Nkere, C., Lava Kumar, P., and Seal, S. E. 2015. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J. Virol. Methods 222:138-144.
Tahzima, R., Foucart, Y., Peusens, G., Beliën, T., Massart, S., and De Jonghe, K. 2017. First report of Little cherry virus 1 affecting European Plum Prunus domestica (L.) in Belgium. Plant Dis. 101:1557.
Tahzima, R., Foucart, Y., Peusens, G., Beliën, T., Massart, S., and De Jonghe, K. 2019a. High-throughput sequencing assists in studies in genomic variability and epidemiology of Little cherry virus 1 and 2 infecting Prunus spp. in Belgium. Viruses 592:1-12.
Tahzima, R., Foucart, Y., Peusens, G., Beliën, T., Massart, S., and De Jonghe, K. 2019b. New sensitive and fast detection of Little cherry virus 1 using loop-mediated isothermal amplification. J. Virol. Methods 265:91-98.
Theilmann, J., Mozafari, J., Reade, R., Wu, Z., Xie, W., Jesperson, G., Bernardy, M., Eastwell, K. C., and Rochon, D. 2002. Partial nucleotide sequence and genome organization of a Canadian isolate of Little cherry virus and development of an enzyme-linked immunosorbent assay-based diagnostic test. Phytopathology 92:87-98.
Theilmann, J., Orban, S., and Rochon, D. 2004. High sequence variability among Little cherry virus isolates occurring in British Columbia. Plant Dis. 88:1092-1098.
Tomita, N., Mori, Y., Kanda, H., and Notomi, T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3:877-882.
Tomlinson, J. and Boonham, N. 2008. Potential of LAMP for detection of plant pathogens. CABI Rev. 3:1-7.
Tomlinson, J. A., Dickinson, M. J., and Boonham, N. 2010. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 100:143-149.
USDA NASS. 2017. Non-Citrus Fruits and Nuts 2016 Summary. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, DC.
Varga, A., and James, D. 2006. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J. Virol. Methods 138:184-190.
Villamor, D. E. V., Mekuria, T. A., Pillai, S. S., and Eastwell, K. C. 2016. High-throughput sequencing identifies novel viruses in nectarine: Insights to the etiology of stem-pitting disease. Phytopathology 106:519-527.
Vitushkina, M., Fechtner, B., Agranovsky, A., and Jelkmann, W. 1997. Development of an RT-PCR for the detection of Little cherry virus and characterization of some isolates occurring in Europe. Eur. J. Plant Pathol. 103:803-808.
Voncina, D., Simon, S., Razov, J., and Leong, L. 2016. First report of Little cherry virus 2 on Prunus cerasus var. Marasca in Croatia. J. Plant Pathol. 98:171-185.
Walsh, H. A., and Pietersen, G. 2013. Rapid detection of Grapevine leafroll-associated virus type 3 using a reverse transcription loop-mediated amplification. J. Virol. Methods 194:308-316.
Wang, Z., Gu, Q., Sun, H., Li, H., Sun, B., Liang, X., Yuan, Y., Liu, R., and Shi, Y. 2014. One-step reverse transcription loop mediated isothermal amplification assay for sensitive and rapid detection of Cucurbit chlorotic yellows virus. J. Virol. Methods 195:63-66.
Wei, Q. W., Yu, C., Zhang, C. Y., Miriam, K., Zhang, W. N., Dou, D. L., and Tao, X. R. 2012. One-step detection of bean pod mottle virus in soybean seeds by reverse-transcription loop-mediated isothermal amplification. Virology 9:187.
Welsh, M. F., and Wilks, J. M. 1951. Induced modification of symptom severity in Little Cherry. Phytopathology 41:136-138.
Wilde, W. H. 1960. Insect transmission of the virus causing Little Cherry disease. Can. J. Plant Sci. 40:707-712.
Wilde, W. H. 1962. Effect of two spray programs on leafhoppers in cherry orchards in the Kootonay Valley of British Columbia. Proc. Entomol. Soc. Br. Columbia 59:12-14.
Wilks, J. M., and Milbrath, J. A. 1956. Comparative studies of the virus diseases Western X Little cherry and Little cherry. Phytopathology 46:596-599.
Wilks, J. M., and Reeves, E. L. 1960. Flowering cherry, a reservoir of the Little cherry virus. Phytopathology 50:188-190.
Wilks, J. M., and Welsh, M. F. 1964. Apparent reduction of Little Cherry disease spread in British Columbia. Can. Plant Dis. Surv. 44:126-130.
Wong, Y. P., Othman, S., Lau, Y. L., Radu, S., and Chee, H. Y. 2018. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol 124:626-643.
Yorston, J. M., McMullen, R. D., Slykhuis, J. T., and Welsh, M. F. 1981. Little Cherry Disease in British Columbia. Province of British Columbia Ministry of Agriculture and Food, Victoria, BC, Canada.
Zhang, Z. Y., Liu, X. J., Li, D. W., Yu, J. L., and Han, C. G. 2011. Rapid detection of Wheat yellow mosaic virus by reverse transcription loop-mediated isothermal amplification. Virology 8:550.
Zhao, K., Liu, Y., and Wang, X. 2010. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Barley yellow dwarf viruses in China. J. Virol. Methods 169:211-214.
Zhao, L., Liu, Y., Wu, Y., and Hao, X. 2016. Rapid detection of watermelon viruses by reverse transcription loop-mediated isothermal amplification. J. Phytopathol. 164:330-336.
Zheng, Y., Gao, S., Padmanabhan, C., Li, R., Galvez, M., Gutierrez, D., Fuentes, S., Ling, K.-S., Kreuze, J., and Fei, Z. 2017. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 500:130-138.
Zong, X., Wang, W., Wei, H., Wang, J., Chen, J., Xu, L., Zhu, D., Tan, Y., and Liu, Q. 2014. A multiplex RT-PCR assay for simultaneous detection of four viruses from Sweet cherry. Sci. Hortic. (Amsterdam) 180:118-122.