[en] Recycled aggregates, and especially the fine (0/4 mm) fraction, are often contaminated with sulfates coming from gypsum residues on the demolition site. When these aggregates are used in concrete, the sulfates can induce internal sulfate attack which causes the expansion of concrete. Standard EN206 sets the water soluble sulfate limit at 0.2 % by weight of the aggregate but other studies suggest this limit could be safely increased. In addition to the sulfate content, other parameters like the porosity and alkalinity of a mix have been seen to influence the swelling results. In this study, the different proposed sulfate limits are evaluated on concrete made with 100 % fine recycled aggregates. It is also researched whether mixing parameters could change the swelling amount regardless of sulfate content. The results showed that the incorporation of fine recycled aggregates with sulfate contents up to 0.8 mass% is safe when combined with coarse natural aggregates. If coarse recycled aggregates are used, the sulfate content of fine recycled aggregates could reach up to 0.3 %. The swelling caused by these sulfate levels was not high enough to be influenced by porosity or alkalinity.
Disciplines :
Civil engineering
Author, co-author :
Colman, Charlotte
Bulteel, David; IMT Lille Douai, Institut Mines-Télécom, Centre for Materials and Processes, Lille, France ; University of Lille, Institut Mines-Télécom, University of Artois, Junia, ULR 4515 - LGCgE - Laboratoire de Génie Civil et géoEnvironnement, Lille, France
Elkarim, Bouarroudj Mohamed; University of Orléans, University of Tours, INSA CVL, LaMé, EA, France ; ECOCEM
Rémond, Sébastien; University of Orléans, University of Tours, INSA CVL, LaMé, EA, France
Courard, Luc ; Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Language :
English
Title :
Expansion of concrete by secondary ettringite formation, caused by fine recycled aggregates contaminated with gypsum
Publication date :
19 December 2022
Journal title :
Advances in Cement Research
ISSN :
0951-7197
Publisher :
Thomas Telford Ltd.
Volume :
043
Pages :
1-25
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
11. Sustainable cities and communities 13. Climate action
VALDEM Solutions intégrées de valorisation des flux "matériaux" issus de la démolition des bâtiments : Approche transfrontalière vers une économie circulaire
United Nations Environment Programme, Sustainable buildings and climate initiative (2016).
M. Behera, S. Bhattacharyya, A. Minocha, R. Deoliya, S. Maiti, Recycled aggregate from C&D waste and its use in concrete, a breakthrough towards sustainability in the construction sector: A review, Construction and Building Materials 68 (2014) 501-516. doi:10.1016/j.conbuildmat. 2014.07.003.
C. Thormark, Conservation of energy and natural resources by recycling building waste, Resources, Conservation and Recycling 33 (2001) 113-130. doi:10.1016/S0921-3449(01)00078-7.
N. Serres, S. Braymand, F. Feugeas, Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment, Journal of Building Engineering 5 (2016) 24-33. doi:10.1016/j.jobe. 280 2015.11.004.
S. Delvoie, Z. Zhao, F. Michel, L. Courard, Market analysis of recycled sands and aggregates in NorthWest Europe: drivers and barriers, in: IOP Conference series: Earth and Environmental Science, 2019, pp. 1-8. doi: 10.1088/1755-1315/225/1/012055.
J. De Brito, J. Ferreira, J. Pacheco, D. Soares, M. Guerreiro, Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete, Journal of Building Engineering 6 (2016) 1-16. doi: 10.1016/j.jobe.2016.02.003.
M. Bravo, J. De Brito, J. Pontes, L. Evangelista, Mechanical performance of concrete with recycled aggregates from construction and demolition waste 17 recycling plants, Journal of Cleaner Production 99 (2015) 59-74. doi: 10.1016/j.jclepro.2015.03.012.
P. Gutierrez, M. Sanchez de Juan, Utilization of recycled concrete aggregate for structural concrete, in: Service Life Design for Infrastructures, Delft, 295 2018.
A. Rao, K. Jha, S. Misra, Use of aggregates from recycled construction and demolition waste in concrete, Resources, Conservation and Recycling 50 (2007) 71-81. doi:10.1016/j.resconrec.2006.05.010.
Z. Zhao, L. Courard, S. Groslambert, T. Jehin, A. Léonard, J. Xiao, Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study, Resources, Conservation and Recycling 157 (2020). doi:10.1016/j.resconrec.2020.104786.
J. Thomas, N. Thaickavil, P. Wilson, Strength and durability of concrete containing recycled concrete aggregates, Journal of Building Engineering 19 (2018) 349-365. doi:10.1016/j.jobe.2018.05.007.
B. Mignon, H. Bréquel, Comparative case study of the construction and demolition waste practical treatment induced by different legislations in France and Belgium (Wallonia and Flanders), in: International HISER Conference on Advances in Recycling and Management of Construction and Demolition Waste, 2017.
C. Ulsen, H. Kahn, G. Hawlitschek, E. Masini, S. Angulo, V. John, Production of recycled sand from construction and demolition waste, Construction and Building Materials 40 (2013) 1168-1173. doi:10.1016/j.conbuildmat.2012.02.004.
S. Angulo, C. Ulsen, V. John, H. Kahn, M. Cincotto, Chemical-mineralogical characterization of C&D waste recycled aggregates from Sao Paulo, Brazil, Waste Management 29 (2009) 721-730. doi:10.1016/j.wasman.2008.07.009.
Z. Zhao, S. Rémond, D. Damidot, W. Xu, Influence of hardened cement paste content on the water absorption of fine recycled concrete aggregates, Journal of Sustainable Cement-Based Materials 2 (2013) 186-203. doi: 10.1080/21650373.2013.812942.
V. Tam, C. Tam, K. Le, Removal of cement mortar remains from recycled aggregate using pre-soaking approaches, Resources, Conservation and 325 Recycling 50 (2007) 82-101. doi:10.1016/j.resconrec.2006.05.012.
L. Evangelista, J. De Brito, Concrete with fine recycled aggregates: a review, European Journal of Environmental and Civil Engineering 18 (2014) 129-172. doi:10.1080/19648189.2013.851038.
E. Robinet, Utilisation des fines de recyclage dans la formulation de bétons autocompactants, Master's thesis, Université de Liège (2017).
M. Bravo, J. De Brito, J. Pontes, L. Evangelista, Durability performance of concrete with recycled aggregates from construction and demolition waste plants, Construction and Building Materials 77 (2015) 357-369. doi:10.1016/j.conbuildmat.2014.12.103.
S. Braymand, S. Roux, K. Deodonne, C. Mihalcea, F. Feugeas, C. Fond, Les granulats recyclés de bétons: un matériau à fort potentiel de valorisation dans les bétons, in: Matériaux, Montpellier, 2014.
J. Khatib, Properties of concrete incorporating fine recycled aggregate, Cement and Concrete Research 35 (2005) 763-769. doi:10.1016/j.cemconres.2004.06.017.
M. Braga, J. De Brito, R. Veiga, Incorporation of fine concrete aggregates in mortars, Construction and Building Materials 36 (2012) 960-968. doi: 10.1016/j.conbuildmat.2012.06.031.
M. Collepardi, A state-of-the-art review on delayed ettringite attack on concrete, Cement & Concrete Composites 25 (2003) 401-407. doi:10.1016/S0958-9465(02)00080-X.
H. Asakura, Y. Watanabe, Y. Ono, M. Yamada, Y. Inoue, A. M. Alfaro, Characteristics of fine processed construction and demolition waste in japan and method to obtain fines having low gypsum component and wood contents, Waste Management & Research 28 (2010) 634-646. doi:10.1177/0734242X09339951.
W. Ambros, C. Sampaio, B. Cazacliu, G. Miltzarek, L. R. Miranda, Separation in air jigs of mixed construction and demolition waste, in: Advances in recycling and management of construction and demolition waste, 2017, pp. 25-28.
T. Hansen, H. Narud, Strength of recycled concrete made from crushed concrete coarse aggregate, Concrete International 5 (1983) 79-83.
R. Nassar, P. Soroushian, Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement, Construction and Building Materials 29 (2012) 368-377. doi:10.1016/j.conbuildmat.2011.10.061.
C. Poon, Z. Shui, L. Lam, Effect of microstructure of itz on compressive strength of concrete prepared with recycled aggregates, Construction and Building Materials 18 (2004) 461-468. doi:10.1016/j.conbuildmat. 365 2004.03.005.
F. Rodrigues, M. Carvalho, L. Evangelista, J. De Brito, Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants, Journal of Cleaner Production 52 (2013) 438-445. doi:10.1016/j.jclepro.2013.02.023.
C. Colman, D. Bulteel, S. Rémond, Z. Zhao, L. Courard, Valorization of fine recycled aggregates contaminated with gypsum residues: characterization and evaluation of the risk for secondary ettringite formation, Materials 13 (2020). doi:10.3390/ma13214866.
M. Martin-Morales, M. Zamorano, A. Ruiz-Moyano, I. Valverde-Espinosa, Characterization of recycled aggregates construction and demolition waste for concrete production following the spanish structural concrete code ehe08, Construction and Building Materials 25 (2011) 742-748. doi:10.1016/j.conbuildmat.2010.07.012.
F. Agrela, M. S. de Juan, J. Ayuso, V. Geraldes, J. Jimenez, Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete, Construction and Building Materials 25 (2011) 3950-3955. doi:10.1016/j.conbuildmat.2011.04.027.
K. Mehta, P. Monteiro, Concrete: Microstructure, Properties, and Materials, McGraw-Hill, 2006.
A. Le Roux, S. Orsetti, Les réactions sulfatiques: conditions de formation, structure et expansion des minéraux secondaires sulfates, Bulletin des laboratoires des ponts et chaussées (2000) 41-50.
X. Brunetaud, Etude de l'influence de différents paramètres et de leurs interactions sur la cinétique et l'amplitude de la réaction sulfatique interne au béton, Ph.D. thesis, Ecole Centrale Paris (2005).
S. Diamond, Delayed ettringite formation-processes and problems, Cement & Concrete Composites 18 (1996) 205-215.
H. Taylor, C. Famy, K. Scrivener, Delayed ettringite formation, Cement and Concrete Research 31 (2001) 683-693.
D. Breysse, Deterioration processes in reinforced concrete: an overview, in: C. Maierhofer, H. Reinhardt, G. Dobmann (Eds.), Non-Destructive Evaluation of Reinforced Concrete Structures, Woodhead Publishing, 2010, Ch. 3, pp. 28-56.
European Committee for Standardization, EN 206 'Concrete: Specification, performance, production and conformity: Annex E.3 on Recycled Aggregates' (2014).
A. Yammine, L. Nordine, M. Choinska, F. Bignonnet, J. Mechling, DEF damage in heat cured mortars made of recycled concrete sand aggregate, Construction and Building Materials (2020). doi:10.1016/j.conbuildmat.2020.119059.
P. Rougeau, L. Schmitt, J. Nai-Nhu, A. Djerbi, M. Saillio, E. Ghorbel, J.-M. Mechling, A. Lecomte, R. Trauchessec, D. Bulteel, M. Cyr, N. Leklou, O. Amiri, I. Moulin, T. Lenormand, Durability-related properties, in: F. De Larrard, H. Colina (Eds.), Concrete Recycling : Research and Practice, 410 CRC Press, 2019.
C. Colman, D. Bulteel, V. Thiery, S. Rémond, F. Michel, L. Courard, Internal sulfate attack in mortars containing contaminated fine recycled concrete aggregates, Construction and Building Materials 272 (2020). doi: 10.1016/j.conbuildmat.2020.121851.
G. Escadeillas, J. Aubert, M. Segerer, W. Prince, Some factors affecting delayed ettringite formation in heat-cured mortars, Cement and Concrete Research 37 (2007) 1445-1452. doi:10.1016/j.cemconres.2007.07.004.
M. Juenger, H. Jennings, Effects of high alkalinity on cement pastes, ACI Materials Journal 98a (2001) 251-255.
C. Colman, Z. Zhao, F. Michel, S. Rémond, D. Bulteel, L. Courard, Gypsum residues in recycled materials: Characterization of fine recycled aggregates, in: Service Life Design for Infrastructures, Delft, 2018.
T. Le, S. Rémond, G. Le Saout, E. Garcia-Diaz, Fresh behavior of mortar based on recycled sand: Influence of moisture condition, Construction and Building Materials 106 (2016) 35-42. doi:10.1016/j.conbuildmat.2015. 12.071.
European Committee for Standardization, EN 12390 'Testing hardened concrete. Part 3: Compressive strength of tests specimens' (2001).
S. Abid, A. Nahhab, H. Al-aayedi, A. Nuhair, Expansion and strength properties of concrete containing contaminated recycled concrete aggregate, Case studies in Construction Materials 9 (2018). doi:10.1016/j.cscm. 2018.e00201.
S. Orsetti, Influence des sulfates sur l'apparition et le développement de pathologies dans les matériaux de génie civil traités ou non aux liants hydrauliques: cas du plâtre dans les granulats issus de produits de démolition, Ph.D. thesis, Université Pierre et Marie Curie (1997).
G. Tovar-Rodrigues, M. Barra, S. Pialarissi, D. Aponte, E. Vazquez, Expansion of mortars with gypsum contaminated fine recycled aggregates, Construction and Building Materials 38 (2013) 1211-1220. doi:10.1016/440 j.conbuildmat.2012.09.059.
J. Gallias, Action of gypsum on recycled aggregate concrete, in: Proceedings CIB World Building Congress, Gaevle, Sweden, 1998.
P. C. Hewlett, M. Liska (Eds.), Lea's Chemistry of Cement and Concrete, fifth edition Edition, Butterworth-Heinemann, London, 2019. doi:https://doi.org/10.1016/B978-0-08-100773-0.09991-3.
A. Campos, C. Lopez, A. Blanco, A. Aguado, Effects of an internal sulfate attack and an alkali-aggregate reactionin a concrete dam, Construction and Building Materials 166 (2018) 668-683. doi:10.1016/j.conbuildmat. 2018.01.180.
M. Thomas, K. Folliard, T. Drimalas, T. Ramlochan, Diagnosing delayed ettringite formation in concrete structures, Cement and Concrete Research 38 (2008) 841-847. doi:10.1016/j.cemconres.2008.01.003.