Central African Republic; competition indices; Democratic Republic of the Congo; distance-dependent tree growth models; Republic of Congo; soil nutrients; wood density; Ecology, Evolution, Behavior and Systematics; Ecology; Plant Science
Abstract :
[en] Identifying and quantifying factors that influence tree growth are crucial issues to ensure sustainable forest management, particularly in moist tropical forests. Tree growth depends on several factors comprising ontogenic stage, competition by neighbours and environmental conditions. Several studies have focused on one or two of them, but very few have considered all three, especially in Central Africa. We investigated the effects of diameter and competition on tree growth, in four Central African sites characterized by their soil physicochemical properties, at both tree community and population levels. We calibrated growth models using diameter data collected on 29,741 trees between 2015 and 2018, on twelve 4 or 9-ha plots spread over the four sites. These models included diameter, wood density, competition indices and site effect as explainable variables at the community level and excluded wood density at the population level. At the community level, the best models explained 11% of growth variability with a decreasing effect of species wood density, diameter, site and competition. Our results show that even if low, site effect can result from different soil nutrients depending on both tree size and species wood density. We observed higher tree growth on sites with (i) high exchangeable K, organic C, total N and total P for low wood density species; (ii) high available P and C:N for small trees, high exchangeable Ca and Mg for medium to large trees, all belonging to medium and hard wood density species. At the population level, the best models explained between 0 to 43% of growth variability, with significant competition effect (resp. site effect) for 21 (resp. 9) of the 43 species studied. Site ranking varied greatly between the 9 species concerned, probably reflecting different sensitivities to the scarcity of particular soil nutrients. Synthesis. Our study provides original results on the factors influencing tree growth in Central Africa, showing that the potential effect of soil nutrients depends on tree size and species wood density. Remaining highly unpredictable at the population level, this effect makes it essential to increase the number of dynamics monitoring systems in logging concessions.
Gourlet-Fleury, Sylvie ; Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France ; Cirad Forêts et Sociétés, Montpellier, France
Rossi, Vivien ; Cirad Forêts et Sociétés, Montpellier, France ; Cirad Forêts et Sociétés, Yaoundé, Cameroon ; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachs' Training College, University of Yaoundé I, Yaoundé, Cameroon
Forni, Eric; Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France ; Cirad Forêts et Sociétés, Montpellier, France
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Ligot, Gauthier ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Allah-Barem, Félix; Institut Centrafricain de la Recherche Agronomique, Bangui, Central African Republic
Baya, Fidèle; Institut Centrafricain de la Recherche Agronomique, Bangui, Central African Republic
Bénédet, Fabrice; Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France ; Cirad Forêts et Sociétés, Montpellier, France
Boyemba, Faustin; Laboratoire d'Ecologie et Aménagement Forestier Durable (LECAFOR), Université de Kisangani, Kisangani, Democratic Republic Congo
Cornu, Guillaume ; Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France ; Cirad Forêts et Sociétés, Montpellier, France
Doucet, Jean-Louis ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Gillet, Jean-François ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières ; Nature Forest Environment, Porcheresse/Daverdisse, Belgium
Mazengue, Mathurin; Mokabi SA, Impfondo, Democratic Republic Congo
Mbasi Mbula, Michel; Laboratoire d'Ecologie et Aménagement Forestier Durable (LECAFOR), Université de Kisangani, Kisangani, Democratic Republic Congo ; Institut Supérieur d'Etudes Agronomiques de Bengamisa (ISEA-Bengamisa), Bengamisa, Democratic Republic Congo
Van Hoef, Yorick; Forêts et Sociétés, Université de Montpellier, Cirad Montpellier, France ; Cirad Forêts et Sociétés, Montpellier, France
AFD - Agence Française de Développement FFEM - Fonds Français pour l'Environnement Mondial
Funding text :
This work was supported by FFEM (« Fonds Français pour l'Environnement Mondial ») and AFD (‘Agence Française de Développement’), DynAfFor Project, convention CZZ1636.01D and CZZ1636.02D, and the P3FAC Project, convention CZZ 2101.01 R). We thank the ARF Project and its seven partners: AFD, CIRAD, ICRA, SCAC/MAE, University of Bangui and the logging company SCAD for providing access to the M'Baïki site and to its database; the logging companies CIB‐Olam and Mokabi SA (Rougier Group) for their logistical organization, which enabled the settlement and monitoring of the Loundoungou and Mokabi sites in the best conditions; and the University of Kisangani and the R&SD project which, under both UE and FFEM fundings, settled and monitored the Yoko site. We would also like to thank all the members of the field teams who spared no effort to carry out the work with seriousness and good humour. We have a special thought for one of them, Issa Mogbaya, who died during the work period. We thank Jacques Beauchene and Kevin Candelier for sharing their expertise on the properties of tropical woods. Finally, we would like to express our gratitude to anonymous reviewers for their valuable comments.
Abe, S. S., Yamamoto, S., & Wakatsuki, T. (2009). Soil-particle selection by the mound-building termite Macrotermes bellicosus on a sandy loam soil catena in a Nigerian tropical savanna. Journal of Tropical Ecology, 25(4), 449–452. https://doi.org/10.1017/S0266467409006142
Alvarez-Clare, S., Mack, M. C., & Brooks, M. (2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94, 1540–1551. https://doi.org/10.1890/12-2128.1
Aoyagi, R., Imai, N., Seino, T., & Kitayama, K. (2016). Soil nutrients and size-dependent tree dynamics of tropical lowland forests on volcanic and sedimentary substrates in Sabah, Malaysian Borneo. Tropics, 25(2), 43–52. https://doi.org/10.3759/tropics.MS15-13
Araujo, R. F., Chambers, J. Q., Souza Celes, C. H., Muller-Landau, H. C., Ferreira dos Santos, A. P., Emmert, F., Ribeiro, G. H. P. M., Gimenez, B. O., Lima, A. J. N., Campos, M. A. A., & Higuchi, N. (2020). Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics. PLoS ONE, 15(12), e0243079. https://doi.org/10.1371/journal.pone.0243079
Baker, T. R., Swaine, M. D., & Burslem, D. (2003). Variation in tropical forest growth rates: Combined effects of functional group composition and resource availability. Perspectives in Plant Ecology Evolution and Systematics, 6(1–2), 21–36. https://doi.org/10.1078/1433-8319-00040
Baribault, T. W., Kobe, R. K., & Finley, A. O. (2012). Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 82(2), 189–203. https://doi.org/10.1890/11-1013.1
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bauters, M., Janssens, I. A., Wasner, D., Doetterl, S., Vermeir, P., Griepentrog, M., Drake, T. W., Six, J., Barthel, M., Baumgartner, S., van Oost, K., Makelele, I. A., Ewango, C., Verheyen, K., & Boeckx, P. (2022). Increasing calcium scarcity along Afrotropical forest succession. Nature Ecology and Evolution, 6, 1122–1131. https://doi.org/10.1038/s41559-022-01810-2
Bénédet, F., Doucet, J.-L., Fayolle, A., Gillet, J.-F., Gourlet-Fleury, S., & Vincke, D. (2019). CoForTraits, African plant traits information database. CIRAD Dataverse. https://doi.org/10.18167/dvn1/y2bizk
Blundo, C., Carilla, J., Grau, R., Malizia, A., Malizia, L., Osinaga-Acosta, O., Bird, M., Bradford, M., Catchpole, D., Ford, A., Graham, A., Hilbert, D., Kemp, J., Laurance, S., Laurance, W., Ishida, F. Y., Marshall, A., Waite, C., Woell, H., … Tran, H. D. (2021). Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 260, 108849. https://doi.org/10.1016/j.biocon.2020.108849
Boulvert, Y. (1986). Carte phytogéographique de la République Centrafricaine à 1: 1.000. 000. feuille Ouest, feuille Est. ORSTOM, Collection Notice Explicative, 104, 1–131.
Chi, X., Tang, Z., Xie, Z., Guo, Q., Zhang, M., Ge, J., Xiong, G., & Fang, J. (2015). Effects of size, neighbors, and site condition on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest, China. Ecology and Evolution, 5(22), 5149–5161. https://doi.org/10.1002/ece3.1665
Clark, D. A., & Clark, D. B. (1999). Assessing the growth of tropical rain forest trees: Issues for forest modeling and management. Ecological Applications, 9(3), 981–997. https://www.webofscience.com/wos/woscc/full-record/WOS:000081972600019
Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M. C., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. J., & Wieder, W. R. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis (vol 14, pg 939, 2011). Ecology Letters, 14(12), 1313–1317. https://doi.org/10.1111/j.1461-0248.2011.01711.x
Dawkins, H. C. (1958). The management of natural tropical highforest with special reference to Uganda. Institute Paper IFI.
Dawkins, H. C. (1966). The productivity of tropical high-forest trees and their reaction to controllable environment, Balliol College, Nuffield Foundation research fellowship, 1960–1963. Commonwealth Forestry Institute.
De Madron, L. D., Nasi, R., & Détienne, P. (2000). Accroissements diamétriques de quelques essences en forêt dense africaine. Bois et Forets des Tropiques, 263(1), 63–74.
DYNAFAC. (2022). Dynamique des forêts d'Afrique centrale—Pour une amélioration de la durabilité des plans d'aménagement forestiers. Synthèse des projets DynAfFor et P3FAC (p. 76) [Rapport technique]. FFEM/AFD, CIRAD/Nature+/Liege University.
Feteke, F., Perin, J., Fayolle, A., Dainou, K., Bourland, N., Kouadio, Y. L., Moneye, S. J. J., Bekono, C.-C., Liboum, M. Y., Doucet, J.-L., & Lejeune, P. (2015). Modelling growth in four species to Improve Forest Management in Cameroon. Bois et Forets des Tropiques, 325, 5–20. https://www.webofscience.com/wos/woscc/full-record/WOS:000366064800001
Forni, E., Rossi, V., Gillet, J.-F., Benedet, F., Cornu, G., Freycon, V., Zombo, I., Mazengue, M., Alberny, E., Mayinga, M., Istace, V., & Gourlet-Fleury, S. (2019). New-generation permanent sampling sites to monitor forest dynamics in Central Africa: Results from the republic of Congo. Bois et Forets des Tropiques, 341, 55–70. https://doi.org/10.19182/bft2019.341.a31760
Gourlet-Fleury, S., & Houllier, F. (2000). Modelling diameter increment in a lowland evergreen rain forest in French Guiana. Forest Ecology and Management, 131(1–3), 269–289. https://doi.org/10.1016/S0378-1127(99)00212-1
Gourlet-Fleury, S., Mortier, F., Fayolle, A., Baya, F., Ouedraogo, D., Benedet, F., & Picard, N. (2013). Tropical forest recovery from logging: A 24 year silvicultural experiment from Central Africa. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1625), 20120302. https://doi.org/10.1098/rstb.2012.0302
Groenendijk, P., Bongers, F., & Zuidema, P. A. (2017). Using tree-ring data to improve timber-yield projections for African wet tropical forest tree species. Forest Ecology and Management, 400, 396–407. https://doi.org/10.1016/j.foreco.2017.05.054
Grote, S., Condit, R., Hubbell, S., Wirth, C., & Rüger, N. (2013). Response of demographic rates of tropical trees to light availability: Can position-based competition indices replace information from canopy census data? PLoS ONE, 8(12), e81787. https://doi.org/10.1371/journal.pone.0081787
Hawthorne, W. D. (1995). Ecological profiles of Ghanaian forest trees tropical forestry paper 29. Oxford Forestry Institute, Department of Plant Sciences.
Heineman, K. D., Turner, B. L., & Dalling, J. W. (2016). Variation in wood nutrients along a tropical soil fertility gradient. The New Phytologist, 211(2), 440–454. https://doi.org/10.1111/nph.13904
Herault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C. E. T., Wagner, F., & Baraloto, C. (2011). Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 99(6), 1431–1440. https://doi.org/10.1111/j.1365-2745.2011.01883.x
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuni-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonke, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0
Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M., & Zougmoré, R. (2015). Atlas des sols d'Afrique. Commission européenne, Bureau des publications de l'Union européenne.
King, D. A., Davies, S. J., Supardi, M. N. N., & Tan, S. (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19(3), 445–453. https://doi.org/10.1111/j.1365-2435.2005.00982.x
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529(7585), 204–207. https://doi.org/10.1038/nature16476
Laurans, M., Herault, B., Vieilledent, G., & Vincent, G. (2014). Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management, 329, 79–88. https://doi.org/10.1016/j.foreco.2014.05.059
Le Bec, J., Courbaud, B., Le Moguedec, G., & Pelissier, R. (2015). Characterizing tropical tree species growth strategies: Learning from inter-individual variability and scale invariance. PLoS ONE, 10(3), e0117028. https://doi.org/10.1371/journal.pone.0117028
Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G., … Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1625), 20120295. https://doi.org/10.1098/rstb.2012.0295
Li, Y., Tian, D., Yang, H., & Niu, S. (2018). Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32(1), 95–105. https://doi.org/10.1111/1365-2435.12975
Ligot, G., Fayolle, A., Gourlet-Fleury, S., Dainou, K., Gillet, J.-F., De Ridder, M., Drouet, T., Groenendijk, P., & Doucet, J.-L. (2019). Growth determinants of timber species Triplochiton scleroxylon and implications for forest management in Central Africa. Forest Ecology and Management, 437, 211–221. https://doi.org/10.1016/j.foreco.2019.01.042
Ligot, G., Gourlet-Fleury, S., Dainou, K., Gillet, J.-F., Rossi, V., Mazengué, M., Ekome, S. N., Nkoulou, Y. S., Zombo, I., Forni, E., & Doucet, J.-L. (2022). Tree growth and mortality of 42 timber species in Central Africa. Forest Ecology and Management, 505, 119889. https://doi.org/10.1016/j.foreco.2021.119889
Lira-Martins, D., Quesada, C. A., Strekopytov, S., Humphreys-Williams, E., Herault, B., & Lloyd, J. (2022). Wood nutrient-water-density linkages are influenced by both species and environment. Frontiers in Plant Science, 13, 778403. https://doi.org/10.3389/fpls.2022.778403
Milne, G. (1947). A soil reconnaissance journey through part of Tanganyika territory December 1935 to February 1936. Journal of Ecology, 35, 192–265.
Moravie, M. A., Durand, M., & Houllier, F. (1999). Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). Forest Ecology and Management, 117(1–3), 221–240. https://doi.org/10.1016/S0378-1127(98)00480-0
Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14, 20170213. https://doi.org/10.1098/rsif.2017.0213
Ndamiyehe Ncutirakiza, J.-B., Lejeune, P., Gourlet-Fleury, S., Fayolle, A., Ndjele Mianda-Bungi, L., & Ligot, G. (2020). Quantifying crown dimensions using high-resolution aerial imagery to estimate the diametric growth of trees in central African forests. Bois et Forets des Tropiques, 343, 67–81. https://doi.org/10.19182/bft2020.343.a31848
Paoli, G. D., & Curran, L. M. (2007). Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10(3), 503–518. https://doi.org/10.1007/s10021-007-9042-y
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patino, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Davila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., … Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9(6), 2203–2246. https://doi.org/10.5194/bg-9-2203-2012
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Réjou-Méchain, M., Mortier, F., Bastin, J.-F., Cornu, G., Barbier, N., Bayol, N., Bénédet, F., Bry, X., Dauby, G., Deblauwe, V., Doucet, J.-L., Doumenge, C., Fayolle, A., Garcia, C., Kibambe, J.-P., & Gourlet-Fleury, S. (2021). Unveiling African rainforest composition and vulnerability to global change. Nature, 593, 90–94. https://doi.org/10.1038/s41586-021-03483-6
Rozendaal, D. M. A., Phillips, O. L., Lewis, S. L., Affum-Baffoe, K., Alvarez-Davila, E., Andrade, A., Aragao, L. E. O. C., Araujo-Murakami, A., Baker, T. R., Banki, O., Brienen, R. J. W., Camargo, J. L. C., Comiskey, J. A., Djuikouo Kamdem, M. N., Fauset, S., Feldpausch, T. R., Killeen, T. J., Laurance, W. F., Laurance, S. G. W., … Vanderwel, M. C. (2020). Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 101(7), e03052. https://doi.org/10.1002/ecy.3052
Rueger, N., Berger, U., Hubbell, S. P., Vieilledent, G., & Condit, R. (2011). Growth strategies of tropical tree species: Disentangling light and size effects. PLoS ONE, 6(9), e25330. https://doi.org/10.1371/journal.pone.0025330
Rueger, N., Huth, A., Hubbell, S. P., & Condit, R. (2009). Response of recruitment to light availability across a tropical lowland rain forest community. Journal of Ecology, 97(6), 1360–1368. https://doi.org/10.1111/j.1365-2745.2009.01552.x
Russo, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93, 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x
Sheil, D., & Salim, A. (2004). Forest tree persistence, elephants, and stem scars. Biotropica, 36(4), 505–521. https://doi.org/10.1646/1599
Sylvie, G.-F., Vivien, R., Eric, F., Adeline, F., Gauthier, L., Félix, A.-B., Fidèle, B., Fabrice, B., Faustin, B., Guillaume, C., Jean-Louis, D., Jean-François, G., Mathurin, M., Michel, M. M., Yorick, V. H., Isaac, Z., & Vincent, F. (2023). Data from: Competition and site weakly explain tree growth variability in undisturbed Central African moist forests. CIRAD Dataverse. https://doi.org/10.18167/DVN1/T0DMFJ
Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 559(7713), E4. https://doi.org/10.1038/s41586-018-0099-x
Uriarte, M., Canham, C. D., Thompson, J., & Zimmerman, J. K. (2004). A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs, 74(4), 591–614. https://doi.org/10.1890/03-4031
Vanclay, J. (1991). Aggregating tree species to develop diameter increment equations for tropical rain-forests. Forest Ecology and Management, 42(3–4), 143–168. https://doi.org/10.1016/0378-1127(91)90022-N
Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5–15. https://doi.org/10.1890/08-0127.1
Zambrano, J., Fagan, W. F., Worthy, S. J., Thompson, J., Uriarte, M., Zimmerman, J. K., Umana, M. N., & Swenson, N. G. (2019). Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. Journal of Ecology, 107(2), 887–900. https://doi.org/10.1111/1365-2745.13075
Zemunik, G., Davies, S. J., & Turner, B. L. (2018). Soil drivers of local-scale tree growth in a lowland tropical forest. Ecology, 99(12), 2844–2852. https://doi.org/10.1002/ecy.2532