The clinical and therapeutic profiles of prolactinomas associated with germline pathogenic variants in the aryl hydrocarbon receptor interacting protein gene
[en] Introduction: Prolactinomas are the most frequent type of pituitary adenoma encountered in clinical practice. Dopamine agonists (DA) like cabergoline typically provide sign/ symptom control, normalize prolactin levels and decrease tumor size in most patients. DA-resistant prolactinomas are infrequent and can occur in association with some genetic causes like MEN1 and pathogenic germline variants in the AIP gene (AIPvar).
Methods: We compared the clinical, radiological, and therapeutic characteristics of AIPvar-related prolactinomas (n=13) with unselected hospital-treated prolactinomas (“unselected”, n=41) and genetically-negative, DA-resistant prolactinomas (DA-resistant, n=39).
Results: AIPvar-related prolactinomas occurred at a significantly younger age than the unselected or DA-resistant prolactinomas (p<0.01). Males were more common in the AIPvar (75.0%) and DA- resistant (49.7%) versus unselected prolactinomas (9.8%; p<0.001). AIPvar prolactinomas exhibited significantly more frequent invasion than the other groups (p<0.001) and exhibited a trend to larger tumor diameter. The DA-resistant group had significantly higher prolactin levels at diagnosis than the AIPvar group (p<0.001). Maximum DA doses were significantly higher in the AIPvar and DA-resistant groups versus unselected. DA-induced macroadenoma shrinkage (>50%) occurred in 58.3% in the AIPvar group versus 4.2% in the DA-resistant group (p<0.01). Surgery was more frequent in the AIPvar and DA- resistant groups (43.8% and 61.5%, respectively) versus unselected (19.5%: p<0.01). Radiotherapy was used only in AIPvar (18.8%) and DA-resistant (25.6%) groups.
Discussion: AIPvar confer an aggressive phenotype in prolactinomas, with invasive tumors occurring at a younger age. These characteristics can help differentiate rare AIPvar related prolactinomas from DA-resistant, genetically-negative tumors.
Vroonen, Laurent ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'endocrinologie clinique
Beckers, Albert ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'endocrinologie clinique
CAMBY, Séverine ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chirurgie plastique et maxillo-faciale
Cuny, Thomas; APHM, Department of Endocrinology, Institut MarMaRa, INSERM, Hospital La Conception, Aix-Marseille Université, France
Beckers, Pablo ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Jaffrain-Rea, Marie-Lise; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy ; Neuromed IRCCS, Pozzilli, Italy
Cogne, Muriel; Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
Naves, Luciana; Department of Endocrinology, University of Brasilia, Brazil
Ferriere, Amandine; Department of Endocrinology, Hopital Haut-Leveque, CHU de Bordeaux, Pessac, France
Romanet, Pauline; Laboratory of Molecular Biology, INSERM, MMG, Hospital La Conception ; Department of Endocrinology, Institut MarMaRa, Marseille, France. 10
Elenkova, Atanaska; Department of Endocrinology, Medical University Sofia, Bulgaria
Karhu, Auli; Research Programs Unit, Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Finland
Brue, Thierry; APHM, Department of Endocrinology, Institut MarMaRa, INSERM, Hospital La Conception, Aix-Marseille Université, France
Barlier, Anne; Department of Endocrinology, University Hospital Center Bordeaux, Hopital Haut Leveque, France ; Laboratory of Molecular Biology, Institut MarMaRa, INSERM, Hospital La Conception ; Aix-Marseille Université, France
Pétrossians, Patrick ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'endocrinologie clinique
Daly, Adrian ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'endocrinologie clinique ; Université de Liège - ULiège > Département des sciences cliniques
The clinical and therapeutic profiles of prolactinomas associated with germline pathogenic variants in the aryl hydrocarbon receptor interacting protein gene
Daly AF Beckers A. The epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am (2020) 49:347–55. doi: 10.1016/j.ecl.2020.04.002
Melmed S Casanueva FF Hoffman AR Kleinberg DL Montori VM Schlechte JA et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab (2011) 96:273–88. doi: 10.1210/jc.2010-1692
Vasilev V Daly AF Vroonen L et al. Resistant prolactinomas. J Endocrinol Invest (2011) 34:312–316. doi: 10.1007/BF03347092
Chanson P Maiter D. The epidemiology, diagnosis and treatment of Prolactinomas: The old and the new. Best Pract Res Clin Endocrinol Metab (2019) 33:101290. doi: 10.1016/j.beem.2019.101290
Maiter D. Management of dopamine agonist-resistant prolactinoma. Neuroendocrinology (2019) 109:42–50. doi: 10.1159/000495775
Souteiro P Karavitaki N. Dopamine agonist resistant prolactinomas: any alternative medical treatment? Pituitary (2020) 23:27–37. doi: 10.1007/s11102-019-00987-3
Herman V Fagin J Gonsky R Kovacs K Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab (1990) 71:1427–33. doi: 10.1210/jcem-71-6-1427
Vandeva S Daly AF Petrossians P Zacharieva S Beckers A. Somatic and germline mutations in the pathogenesis of pituitary adenomas. Eur J Endocrinol (2019) 181:R235–54. doi: 10.1530/EJE-19-0602
Vergès B Boureille F Goudet P Murat A Beckers A Sassolas G et al. Pituitary disease in MEN type 1 (MEN1): Data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab (2002) 87:457–65. doi: 10.1210/jcem.87.2.8145
de Laat JM Dekkers OM Pieterman CRC Kluijfhout WP Hermus AR Pereira AM et al. Long-term natural course of pituitary tumors in patients with MEN1: results from the dutchMEN1 study group (DMSG). J Clin Endocrinol Metab (2015) 100:3288–96. doi: 10.1210/JC.2015-2015
Le Bras M Leclerc H Rousseau O Goudet P Cuny T Castinetti F et al. Pituitary adenoma in patients with multiple endocrine neoplasia type 1: a cohort study. Eur J Endocrinol (2021) 185:863–73. doi: 10.1530/EJE-21-0630
Daly AF Jaffrain-Rea M-L Ciccarelli A Valdes-Socin H Rohmer V Tamburrano G et al. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab (2006) 91:3316–23. doi: 10.1210/jc.2005-2671
Daly AF Vanbellinghen J-F Sok KK Jaffrain-Rea M-L Naves LA Guitelman MA et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: Analysis in 73 families. J Clin Endocrinol Metab (2007) 92:1891–6. doi: 10.1210/jc.2006-2513
Beckers A Aaltonen LA Daly AF Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev (2013) 34:239–77. doi: 10.1210/er.2012-1013
Leontiou CA Gueorguiev M van der Spuy J Quinton R Lolli F Hassan S et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab (2008) 93:2390–401. doi: 10.1210/jc.2007-2611
Daly AF Tichomirowa MA Petrossians P Heliövaara E Jaffrain-Rea M-L Barlier A et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab (2010) 95:E373–83. doi: 10.1210/jc.2009-2556
Tichomirowa MA Barlier A Daly AF Jaffrain-Rea M-L Ronchi C Yaneva M et al. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur J Endocrinol (2011) 165:509–15. doi: 10.1530/EJE-11-0304
Tichomirowa MA Lee M Barlier A Daly AF Marinoni I Jaffrain-Rea M-L et al. Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr Relat Cancer (2012) 19:233–41. doi: 10.1530/ERC-11-0362
Chanson P Maiter D. Chapter 16 – prolactinoma. In: The pituitary (2017). (London, UK: Academic Press) 467–514. doi: 10.1016/B978-0-12-804169-7.00016-7
Arya VB Aylwin SJB Hulse T Ajzensztejn M Kalitsi J Kalogirou N et al. Prolactinoma in childhood and adolescence-Tumour size at presentation predicts management strategy: Single centre series and a systematic review and meta-analysis. Clin Endocrinol (Oxf) (2021) 94:413–23. doi: 10.1111/cen.14394
Vroonen L Jaffrain-Rea M-L Petrossians P Tamagno G Chanson P Vilar L et al. Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. Eur J Endocrinol (2012) 167:651–62. doi: 10.1530/EJE-12-0236
Vroonen L Daly AF Beckers A. Epidemiology and management challenges in prolactinomas. Neuroendocrinology (2019) 109:20–7. doi: 10.1159/000497746
Pivonello C Patalano R Negri M Pirchio R Colao A Pivonello R et al. Resistance to dopamine agonists in pituitary tumors: molecular mechanisms. Front Endocrinol (Lausanne) (2021) 12:791633. doi: 10.3389/fendo.2021.791633
Bogner EM Daly AF Gulde S Karhu A Irmler M Beckers J et al. miR-34a is upregulated in AIP-mutated somatotropinomas and promotes octreotide resistance. Int J Cancer (2020) 147:3523–38. doi: 10.1002/ijc.33268
Delgrange E Trouillas J Maiter D Donckier J Tourniaire J. Sex-related difference in the growth of prolactinomas: A clinical and proliferation marker study1. J Clin Endocrinol Metab (1997) 82:2102–7. doi: 10.1210/jcem.82.7.4088
Carty DM Harte R Drummond RS Ward R Magid K Collier D et al. AIP variant causing familial prolactinoma. Pituitary (2021) 24:48–52. doi: 10.1007/s11102-020-01085-5
Daly AF Cano DA Venegas-Moreno E Petrossians P Dios E Castermans E et al. AIP and MEN1 mutations and AIP immunohistochemistry in pituitary adenomas in a tertiary referral center. Endocr Connect (2019) 8:338–48. doi: 10.1530/EC-19-0027
Kumar S Sarathi V Lila AR Sehemby M Memon SS Karlekar M et al. Giant prolactinoma in children and adolescents: a single-center experience and systematic review. Pituitary (2022) 25:819–30. doi: 10.1007/s11102-022-01250-y
Salenave S Ancelle D Bahougne T Raverot G Kamenický P Bouligand J et al. Macroprolactinomas in children and adolescents: factors associated with the response to treatment in 77 patients. J Clin Endocrinol Metab (2015) 100:1177–86. doi: 10.1210/jc.2014-3670
Tuncer FN Çiftçi Doğanşen S Serbest E Tanrıkulu S Ekici Y Bilgiç B et al. Screening of AIP gene variations in a cohort of turkish patients with young-onset sporadic hormone-secreting pituitary adenomas. Genet Test Mol Biomarkers (2018) 22:702–8. doi: 10.1089/gtmb.2018.0133
Martínez de LaPiscina I Portillo Najera N Rica I Gaztambide S Webb SM Santos A et al. Clinical and genetic characteristics in patients under 30 years with sporadic pituitary adenomas. Eur J Endocrinol (2021) 185:485–96. doi: 10.1530/EJE-21-0075
Georgitsi M Raitila A Karhu A Tuppurainen K Makinen MJ Vierimaa O et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc Natl Acad Sci U.S.A. (2007) 104:4101–5. doi: 10.1073/pnas.0700004104
Barlier A Vanbellinghen J-F Daly AF Silvy M Jaffrain-Rea M-L Trouillas J et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J Clin Endocrinol Metab (2007) 92:1952–5. doi: 10.1210/jc.2006-2702
Cazabat L Guillaud-Bataille M Bertherat J Raffin-Sanson ML. Mutations of the gene for the aryl hydrocarbon receptor-interacting protein in pituitary adenomas. Horm Res (2009) 71:132–41. doi: 10.1159/000197869
Cazabat L Bouligand J Salenave S Bernier M Gaillard S Parker F et al. Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J Clin Endocrinol Metab (2012) 97:E663–70. doi: 10.1210/jc.2011-2291
Cuny T Pertuit M Sahnoun-Fathallah M Daly A Occhi G Odou MF et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don’t forget MEN1 genetic analysis. Eur J Endocrinol / Eur Fed Endocrine Societies (2013) 168:533–41. doi: 10.1530/EJE-12-0763
Occhi G Trivellin G Ceccato F De Lazzari P Giorgi G Dematte S et al. Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patients and evaluation of CDKN1B status in acromegalic patients with multiple endocrine neoplasia. Eur J Endocrinol (2010) 163:369–76. doi: 10.1530/EJE-10-0327
Araujo PB Kasuki L de Azeredo Lima CH Ogino L Camacho AHS Chimelli L et al. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation. Endocr Connect (2017) 6:914–25. doi: 10.1530/EC-17-0237
Cai F Zhang YD Zhao X Yang YK Ma SH Dai CX et al. Screening for AIP gene mutations in a Han Chinese pituitary adenoma cohort followed by LOH analysis. Eur J Endocrinol (2013) 169:867–84. doi: 10.1530/EJE-13-0442
Preda V Korbonits M Cudlip S Karavitaki N Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol (2014) 171:659–66. doi: 10.1530/EJE-14-0426
Stratakis CA Tichomirowa MA Boikos S Azevedo MF Lodish M Martari M et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet (2010) 78:457–63. doi: 10.1111/j.1399-0004.2010.01406.x
Hernández-Ramírez LC Gabrovska P Dénes J Stals K Trivellin G Tilley D et al. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab (2015) 100:E1242–54. doi: 10.1210/jc.2015-1869
Vacchiano V Seleme S Daly AF Beckers A Valdés-Socin H. Clinical and genetic studies of a three-member familial isolated pituitary adenoma with homogeneous prolactinomas. Medicina (B Aires) (2020) 80:181–4.
Vroonen L Jaffrain-Rea M-L Petrossians P Tamagno G Chanson P Vilar L et al. Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. Eur J Endocrinol (2012) 167(5):651–62. doi: 10.1530/EJE-12-0236
Steeds R Stiles C Sharma V Chambers J Lloyd G Drake W. Echocardiography and monitoring patients receiving dopamine agonist therapy for hyperprolactinaemia: A joint position statement of the British Society of Echocardiography, the British Heart Valve Society and the Society for Endocrinology. Clin Endocrinol (Oxf) (2019) 90:662–9. doi: 10.1111/cen.13940
Daly AF Beckers A. A hard look at cardiac safety with dopamine agonists in endocrinology. J Clin Endocrinol Metab (2021) 106(6):e2452–e2454. doi: 10.1210/clinem/dgab073
Caputo C Prior D Inder WJ. The need for annual echocardiography to detect cabergoline-associated valvulopathy in patients with prolactinoma: A systematic review and additional clinical data. Lancet Diabetes Endocrinol (2015) 3:906–13. doi: 10.1016/S2213-8587(14)70212-8
Hamidianjahromi A Tritos NA. Impulse control disorders in hyperprolactinemic patients on dopamine agonist therapy. Rev Endocr Metab Disord (2022) 23:1089–99. doi: 10.1007/s11154-022-09753-6
De Sousa SMC Baranoff J Rushworth RL Butler J Sorbello J Vorster J et al. Impulse control disorders in dopamine agonist-treated hyperprolactinemia: prevalence and risk factors. J Clin Endocrinol Metab (2020) 105:e108–18. doi: 10.1210/clinem/dgz076
Aflorei ED Klapholz B Chen C Radian S Dragu AN Moderau N et al. In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet (2018) 55:522. doi: 10.1136/jmedgenet-2017-105191
Hernández-Ramírez LC Martucci F Morgan RML Trivellin G Tilley D Ramos-Guajardo N et al. Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations. J Clin Endocrinol Metab (2016) 101:3144–54. doi: 10.1210/jc.2016-1307
Garcia-Rendueles AR Chenlo M Oroz-Gonjar F Solomou A Mistry A Barry S et al. RET signalling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas. Oncogene (2021) 40:6354–68. doi: 10.1038/s41388-021-02009-8