Enthesis; Mineralized fibrocartilage; Nanoindentation; Quantitative backscattered electron imaging; Second harmonic generation imaging; Minerals; Animals; Rats; Bone and Bones; Fibrocartilage; Achilles Tendon; Achilles tendons; Backscattered electron imaging; Harmonic generation imaging; Mineral content; Nano indentation; Biotechnology; Biomaterials; Biochemistry; Biomedical Engineering; Molecular Biology; General Medicine
Abstract :
[en] A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Tits, Alexandra ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Blouin, Stéphane ; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
Rummler, Maximilian ; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
Kaux, Jean-François ; Centre Hospitalier Universitaire de Liège - CHU > > Service de médecine de l'appareil locomoteur
Drion, Pierre ; Université de Liège - ULiège > GIGA > GIGA Research (AFT)
van Lenthe, G Harry ; Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
Weinkamer, Richard ; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
Hartmann, Markus A ; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Language :
English
Title :
Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion.
AT is a FRIA (Fund for Research Training in Industry and Agriculture ) grant holder (n° 5129219F ). We warmly thank Luc Duwez from University of Liege, GIGA, for his essential help with sample extraction. We wish to thank Petra Keplinger, Sonja Lueger and Phaedra Messmer from LBIO for the excellent sample preparation. MH and SB are grateful for financial support from the AUVA (Research funds of the Austrian workers’ compensation board) and OEGK (Austrian Social Health Insurance Fund). MR and RW acknowledge support from the Max Planck Queensland centre for the Materials Science of Extracellular Matrices.AT is a FRIA (Fund for Research Training in Industry and Agriculture) grant holder (n°5129219F). We warmly thank Luc Duwez from University of Liege, GIGA, for his essential help with sample extraction. We wish to thank Petra Keplinger, Sonja Lueger and Phaedra Messmer from LBIO for the excellent sample preparation. MH and SB are grateful for financial support from the AUVA (Research funds of the Austrian workers’ compensation board) and OEGK (Austrian Social Health Insurance Fund). MR and RW acknowledge support from the Max Planck Queensland centre for the Materials Science of Extracellular Matrices.
Mow, V.C., Gu, W.Y., Chen, F.H., Structure and function of articular cartilage. Basic Orthop. Biomech. Mechano-Biol. 3 (2005), 181–258.
Han, L., Grodzinsky, A.J., Ortiz, C., Nanomechanics of the cartilage extracellular matrix. Annu. Rev. Mater. Res. 41 (2011), 133–168.
Zizak, I., Roschger, P., Paris, O., Misof, B.M., Berzlanovich, A., Bernstorff, S., Amenitsch, H., Klaushofer, K., Fratzl, P., Characteristics of mineral particles in the human bone/cartilage interface. J. Struct. Biol. 141 (2003), 208–217.
Benjamin, M., Ralphs, J.R., Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J. Anat. 193 (1998), 481–494.
Abraham, A.C., Donahue, T.L.H., From meniscus to bone: a quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater. 9 (2013), 6322–6329.
Boys, A.J., Kunitake, J.A., Henak, C.R., Cohen, I., Estroff, L.A., Bonassar, L.J., Understanding the stiff-to-compliant transition of the meniscal attachments by spatial correlation of composition, structure, and mechanics. ACS Appl. Mater. Interfaces 11 (2019), 26559–26570.
Hauch, K.N., Oyen, M.L., Odegard, G.M., Donahue, T.H., Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J. Mech. Behav. Biomed. Mater. 2 (2009), 339–347.
Waggett, A.D., Ralphs, J.R., Kwan, A.P., Woodnutt, D., Benjamin, M., Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 16 (1998), 457–470.
Rossetti, L., Kuntz, L.A., Kunold, E., Schock, J., Müller, K.W., Grabmayr, H., Stolberg-Stolberg, J., Pfeiffer, F., Sieber, S.A., Burgkart, R., The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16 (2017), 664–670.
Spalazzi, J.P., Boskey, A.L., Pleshko, N., Lu, H.H., Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One, 8, 2013, e74349.
Uzan, A.Y., Milo, O., Politi, Y., Bar-On, B., Principles of elastic bridging in biological materials. Acta Biomater., 2022.
Tits, A., Ruffoni, D., Joining soft tissues to bone: insights from modeling and simulations. Bone Rep, 14, 2021, 100742.
Lu, H.H., Thomopoulos, S., Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng., 15, 2013, 201.
Thomopoulos, S., Williams, G.R., Soslowsky, L.J., Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J. Biomech. Eng. 125 (2003), 106–113.
Thomopoulos, S., Williams, G.R., Gimbel, J.A., Favata, M., Soslowsky, L.J., Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21 (2003), 413–419.
Golman, M., Abraham, A.C., Kurtaliaj, I., Marshall, B.P., Hu, Y.J., Schwartz, A.G., Guo, X.E., Birman, V., Thurner, P.J., Genin, G.M., Toughening mechanisms for the attachment of architectured materials: the mechanics of the tendon enthesis. Sci. Adv., 7, 2021, eabi5584.
Camy, C., Brioche, T., Senni, K., Bertaud, A., Genovesio, C., Lamy, E., Fovet, T., Chopard, A., Pithioux, M., Roffino, S., Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J., 36, 2022.
Gupta, H.S., Schratter, S., Tesch, W., Roschger, P., Berzlanovich, A., Schoeberl, T., Klaushofer, K., Fratzl, P., Two different correlations between nanoindentation modulus and mineral content in the bone–cartilage interface. J. Struct. Biol. 149 (2005), 138–148.
Campbell, S.E., Ferguson, V.L., Hurley, D.C., Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomater. 8 (2012), 4389–4396.
Madi, K., Staines, K.A., Bay, B.K., Javaheri, B., Geng, H., Bodey, A.J., Cartmell, S., Pitsillides, A.A., Lee, P.D., In situ characterization of nanoscale strains in loaded whole joints via synchrotron X-ray tomography. Nat. Biomed. Eng. 4 (2020), 343–354.
Benjamin, M., McGonagle, D., The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199 (2001), 503–526.
Kehl, A.S., Corr, M., Weisman, M.H., Enthesitis: new insights into pathogenesis, diagnostic modalities, and treatment. Arthritis & Rheumatology (Hoboken, NJ), 68, 2016, 312.
Kaux, J.-F., Drion, P.V., Colige, A., Pascon, F., Libertiaux, V., Hoffmann, A., Janssen, L., Heyers, A., Nusgens, B.V., Goff, C.Le, Effects of platelet-rich plasma (PRP) on the healing of A chilles tendons of rats. Wound Repair Regen. 20 (2012), 748–756.
Kaux, J.-F., Drion, P., Libertiaux, V., Colige, A., Hoffmann, A., Nusgens, B., Besançon, B., Forthomme, B., Goff, C.Le, Franzen, R., Eccentric training improves tendon biomechanical properties: a rat model. J. Orthop. Res. 31 (2013), 119–124.
Tits, A., Plougonven, E., Blouin, S., Hartmann, M.A., Kaux, J.-F., Drion, P., Fernandez, J., van Lenthe, G.H., Ruffoni, D., Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci. Rep. 11 (2021), 1–17.
Roschger, P., Fratzl, P., Eschberger, J., Klaushofer, K., Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23 (1998), 319–326.
Hartmann, M.A., Blouin, S., Misof, B.M., Fratzl-Zelman, N., Roschger, P., Berzlanovich, A., Gruber, G.M., Brugger, P.C., Zwerina, J., Fratzl, P., Quantitative Backscattered Electron Imaging of bone using a thermionic or a field emission electron source. Calcif. Tissue Int. 109 (2021), 190–202.
Roschger, P., Paschalis, E.P., Fratzl, P., Klaushofer, K., Bone mineralization density distribution in health and disease. Bone 42 (2008), 456–466.
Shipov, A., Zaslansky, P., Riesemeier, H., Segev, G., Atkins, A., Shahar, R., Unremodeled endochondral bone is a major architectural component of the cortical bone of the rat (Rattus norvegicus). J. Struct. Biol. 183 (2013), 132–140.
Bach-Gansmo, F.L., Irvine, S.C., Brüel, A., Thomsen, J.S., Birkedal, H., Calcified cartilage islands in rat cortical bone. Calcif. Tissue Int. 92 (2013), 330–338.
Roth, S., Freund, I., Second harmonic generation in collagen. J. Chem. Phys. 70 (1979), 1637–1643.
Williams, R.M., Zipfel, W.R., Webb, W.W., Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88 (2005), 1377–1386.
Chen, X., Nadiarynkh, O., Plotnikov, S., Campagnola, P.J., Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7 (2012), 654–669.
Houle, M.-A., Couture, C.-A., Bancelin, S., Van der Kolk, J., Auger, E., Brown, C., Popov, K., Ramunno, L., Légaré, F., Analysis of forward and backward Second Harmonic Generation images to probe the nanoscale structure of collagen within bone and cartilage. J. Biophotonics 8 (2015), 993–1001.
Tang, T., Ebacher, V., Cripton, P., Guy, P., McKay, H., Wang, R., Shear deformation and fracture of human cortical bone. Bone 71 (2015), 25–35.
Donnelly, E., Baker, S.P., Boskey, A.L., van der Meulen, M.C., Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J. Biomed. Mater. Res. Part A 77 (2006), 426–435.
Bobji, M.S., Biswas, S.K., Estimation of hardness by nanoindentation of rough surfaces. J. Mater. Res. 13 (1998), 3227–3233.
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), 1564–1583.
Burkey, J., LOWESS, Locally Weighted Scatterplot Smoothing for linear and non-linear data (enhanced). MATLAB Central File Exchange, 2020.
Shea, J.E., Hallows, R.K., Bloebaum, R.D., Experimental Confirmation of the Sheep Model For Studying the Role of Calcified Fibrocartilage in Hip Fractures and Tendon Attachments, 266, 2002, The Anatomical Record: An Official Publication of the American Association of Anatomists, 177–183.
Ruffoni, D., Fratzl, P., Roschger, P., Klaushofer, K., Weinkamer, R., The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40 (2007), 1308–1319.
Jäger, I., Fratzl, P., Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79 (2000), 1737–1746.
Seidel, R., Roschger, A., Li, L., Bizzarro, J.J., Zhang, Q., Yin, J., Yang, T., Weaver, J.C., Fratzl, P., Roschger, P., Mechanical properties of stingray tesserae: high-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage. Acta Biomater. 96 (2019), 421–435.
Ferguson, V.L., Bushby, A.J., Boyde, A., Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203 (2003), 191–202.
Tang, T., Landis, W., Blouin, S., Bertinetti, L., Hartmann, M.A., Berzlanovich, A., Weinkamer, R., Wagermaier, W., Fratzl, P., Sub-canalicular nanochannel volume is inversely correlated with calcium content in human cortical bone. J. Bone Miner. Res., 2022.
Lukas, C., Ruffoni, D., Lambers, F.M., Schulte, F.A., Kuhn, G., Kollmannsberger, P., Weinkamer, R., Müller, R., Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56 (2013), 55–60.
Ruffoni, D., Fratzl, P., Roschger, P., Phipps, R., Klaushofer, K., Weinkamer, R., Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J. Bone Miner. Res. 23 (2008), 1905–1914.
Roschger, A., Roschger, P., Wagermaier, W., Chen, J., Van Tol, A.F., Repp, F., Blouin, S., Berzlanovich, A., Gruber, G.M., Klaushofer, K., The contribution of the pericanalicular matrix to mineral content in human osteonal bone. Bone 123 (2019), 76–85.
Roschger, A., Wagermaier, W., Gamsjaeger, S., Hassler, N., Schmidt, I., Blouin, S., Berzlanovich, A., Gruber, G.M., Weinkamer, R., Roschger, P., Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater. 104 (2020), 221–230.
Ayoubi, M., van Tol, A.F., Weinkamer, R., Roschger, P., Brugger, P.C., Berzlanovich, A., Bertinetti, L., Roschger, A., Fratzl, P., 3D interrelationship between osteocyte network and forming mineral during human bone remodeling. Adv. Healthc. Mater., 10, 2021, 2100113.
Zhu, W., Iatridis, J.C., Hlibczuk, V., Ratcliffe, A., Mow, V.C., Determination of collagen-proteoglycan interactions in vitro. J. Biomech. 29 (1996), 773–783.
Taguchi, T., Lopez, M.J., An overview of de novo bone generation in animal models. J. Orthop. Res. 39 (2021), 7–21.
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L., Thomopoulos, S., Mineral distributions at the developing tendon enthesis. PLoS One(7), 2012, e48630.
Badi, M.H., Calcification and ossification of fibrocartilage in the attachment of the patellar ligament in the rat. J. Anat., 112, 1972, 415.
Ping, H., Wagermaier, W., Horbelt, N., Scoppola, E., Li, C., Werner, P., Fu, Z., Fratzl, P., Mineralization generates megapascal contractile stresses in collagen fibrils. Science 376 (2022), 188–192.
Masic, A., Bertinetti, L., Schuetz, R., Chang, S.-W., Metzger, T.H., Buehler, M.J., Fratzl, P., Osmotic pressure induced tensile forces in tendon collagen. Nat. Commun. 6 (2015), 1–8.
Sevick, J.L., Abusara, Z., Andrews, S.H., Xu, M., Khurshid, S., Chatha, J., Hart, D.A., Shrive, N.G., Fibril deformation under load of the rabbit Achilles tendon and medial collateral ligament femoral entheses. J. Orthop. Res. 36 (2018), 2506–2515.
Sartori, J., Stark, H., Tracking tendon fibers to their insertion–a 3D analysis of the Achilles tendon enthesis in mice. Acta Biomater. 120 (2021), 146–155.
Sartori, J., Köhring, S., Bruns, S., Moosmann, J., Hammel, J.U., Gaining insight into the deformation of achilles tendon entheses in mice. Adv. Eng. Mater., 23, 2021, 2100085.
Pierantoni, M., Barreto, I.Silva, Hammerman, M., Verhoeven, L., Törnquist, E., Novak, V., Mokso, R., Eliasson, P., Isaksson, H., A quality optimization approach to image Achilles tendon microstructure by phase-contrast enhanced synchrotron micro-tomography. Sci. Rep. 11 (2021), 1–14.
Thomopoulos, S., Marquez, J.P., Weinberger, B., Birman, V., Genin, G.M., Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39 (2006), 1842–1851.
Qu, D., Subramony, S.D., Boskey, A.L., Pleshko, N., Doty, S.B., Lu, H.H., Compositional mapping of the mature anterior cruciate ligament-to-bone insertion. J. Orthop. Res. 35 (2017), 2513–2523.
Zhang, L., Lake, S.P., Lai, V.K., Picu, C.R., Barocas, V.H., Shephard, M.S., A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tissues under tensile load. J. Biomech. Eng., 135, 2013, 011008.
Faingold, A., Cohen, S.R., Shahar, R., Weiner, S., Rapoport, L., Wagner, H.D., The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. J. Biomech. 47 (2014), 367–372.
Reisinger, A.G., Pahr, D.H., Zysset, P.K., Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes. J. Mech. Behav. Biomed. Mater. 4 (2011), 2113–2127.
Carnelli, D., Vena, P., Dao, M., Ortiz, C., Contro, R., Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue. J. R. Soc. Interface, 10, 2013, 20120953.
Moffat, K.L., Sun, W.-H.S., Pena, P.E., Chahine, N.O., Doty, S.B., Ateshian, G.A., Hung, C.T., Lu, H.H., Characterization of the structure–function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. 105 (2008), 7947–7952.
Deymier-Black, A.C., Pasteris, J.D., Genin, G.M., Thomopoulos, S., Allometry of the tendon enthesis: mechanisms of load transfer between tendon and bone. J. Biomech. Eng., 137, 2015 111005–111005.
Deymier, A.C., An, Y., Boyle, J.J., Schwartz, A.G., Birman, V., Genin, G.M., Thomopoulos, S., Barber, A.H., Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater. 56 (2017), 25–35.
Deymier, A.C., Schwartz, A.G., Cai, Z., Daulton, T.L., Pasteris, J.D., Genin, G.M., Thomopoulos, S., The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater. 83 (2019), 302–313.
Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J., Thomopoulos, S., Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97 (2009), 976–985.
Aghaei, A., Bochud, N., Rosi, G., Naili, S., Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach. Biomech. Model. Mechanobiol. 20 (2021), 433–448.
Liu, Y., Thomopoulos, S., Chen, C., Birman, V., Buehler, M.J., Genin, G.M., Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. J. R. Soc. Interface, 11, 2013 20130835–20130835.
Liu, Y., Birman, V., Chen, C., Thomopoulos, S., Genin, G.M., Mechanisms of Bimaterial Attachment at the Interface of Tendon to Bone. J. Eng. Mater. Technol., 133, 2011.
Wagermaier, W., Klaushofer, K., Fratzl, P., Fragility of bone material controlled by internal interfaces. Calcif. Tissue Int. 97 (2015), 201–212.
Torres, A.M., Matheny, J.B., Keaveny, T.M., Taylor, D., Rimnac, C.M., Hernandez, C.J., Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc. Natl. Acad. Sci. 113 (2016), 2892–2897.
Rodriguez-Florez, N., Oyen, M.L., Shefelbine, S.J., Insight into differences in nanoindentation properties of bone. J. Mech. Behav. Biomed. Mater. 18 (2013), 90–99.
Hengsberger, S., Kulik, A., Zysset, P.H., Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30 (2002), 178–184.
Zlotnikov, I., Zolotoyabko, E., Fratzl, P., Nano-scale modulus mapping of biological composite materials: theory and practice. Prog. Mater Sci. 87 (2017), 292–320.
LaComb, R., Nadiarnykh, O., Townsend, S.S., Campagnola, P.J., Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt. Commun. 281 (2008), 1823–1832.
Stockhausen, K.E., Qwamizadeh, M., Wölfel, E.M., Hemmatian, H., Fiedler, I.A.K., Flenner, S., Longo, E., Amling, M., Greving, I., Ritchie, R.O., Schmidt, F.N., Busse, B., Collagen fiber orientation is coupled with specific nano-compositional patterns in dark and bright osteons modulating their biomechanical properties. ACS Nano 15 (2021), 455–467.
Killian, M.L., Cavinatto, L., Galatz, L.M., Thomopoulos, S., The role of mechanobiology in tendon healing. J. Shoulder Elbow Surg. 21 (2012), 228–237.