[en] Greenland rainfall has come into focus as a climate change indicator and from a variety of emerging cryospheric impacts. This study first evaluates rainfall in five state-of-the-art numerical prediction systems (NPSs) (CARRA, ERA5, NHM-SMAP, RACMO, MAR) using in situ rainfall data from two regions spanning from land onto the ice sheet. The new EU Copernicus Climate Change Service (C3S) Arctic Regional ReAnalysis (CARRA), with a relatively fine (2.5 km) horizontal grid spacing and extensive within-model-domain observational initialization, has the lowest average bias and highest explained variance relative to the field data. ERA5 inland wet bias versus CARRA is consistent with the field data and other research and is presumably due to more ERA5 topographic smoothing. A CARRA climatology 1991–2021 has rainfall increasing by more than one-third for the ice sheet and its peripheral ice masses. CARRA and in situ data illuminate extreme (above 300 mm per day) local rainfall episodes. A detailed examination CARRA data reveals the interplay of mass conservation that splits flow around southern Greenland and condensational buoyancy generation that maintains along-flow updraft ‘rapids’ 2 km above sea level, which produce rain bands within an atmospheric river interacting with Greenland. CARRA resolves gravity wave oscillations that initiate as a result of buoyancy offshore, which then amplify from terrain-forced uplift. In a detailed case study, CARRA resolves orographic intensification of rainfall by up to a factor of four, which is consistent with the field data.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Box, Jason E. ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark
Nielsen, Kristian P.; Danish Meteorological Institute Copenhagen Denmark
Yang, Xiaohua; Danish Meteorological Institute Copenhagen Denmark
Niwano, Masashi; Meteorological Research Institute Japan Meteorological Agency Tsukuba Japan ; National Institute of Polar Research Tachikawa Japan
Wehrlé, Adrien; Institute of Geography University of Zurich Zurich Switzerland
van As, Dirk; Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Køltzow, Morten A. Ø.; The Norwegian Meteorological Institute Oslo Norway
Palmason, Bolli; Icelandic Met Office Reykjavik Iceland
Fausto, Robert S.; Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark
van den Broeke, Michiel R.; Institute for Marine and Atmospheric Research Utrecht University Utrecht The Netherlands
Huai, Baojuan; College of Geography and Environment Shandong Normal University Jinan China
Ahlstrøm, Andreas P.; Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark
Abermann, J., Eckerstorfer, M., Malnes, E. & Hansen, B.U. (2019) A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations. Natural Hazards, 97, 517–534.
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V. et al. (2021) Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adelie Land, East Antarctica. Geoscientific Model Development Discussions, 14, 3487–3510.
Anderson, S.P., Hinton, A. & Weller, R.A. (1998) Moored observations of precipitation temperature. Journal of Atmospheric and Oceanic Technology, 15, 979–986.
Barrett, A.P., Stroeve, J.C. & Serreze, M.C. (2020) Arctic Ocean precipitation from atmospheric reanalyses and comparisons with north pole drifting station records. Journal of Geophysical Research: Oceans, 125, e2019JC015415. https://doi.org/10.1029/2019JC015415
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W. et al. (2017) The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Monthly Weather Review, 145, 1919–1935.
Bennartz, R., Shupe, M.D., Turner, D.D., Walden, V.P., Steffen, K., Cox, C.J. et al. (2013) July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86.
Box, J.E., Bromwich, D.H. & Bai, L. (2004) Greenland ice sheet surface mass balance 1991–2000: application of polar MM5 mesoscale model and in situ data. Journal of Geophysical Research: Atmospheres, 109. https://doi.org/10.1029/2003JD004451
Box, J.E., Hubbard, A., Bahr, D.B., Colgan, W.T., Fettweis, X., Mankoff, K.D. et al. (2022) Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change, 12, 808–813.
Box, J.E., van As, D. & Steffen, K. (2017) Greenland, Canadian and Icelandic land-ice albedo grids (2000–2016). GEUS Bulletin, 38, 53–56.
Box, J.E., Wehrlé, A., van As, D., Fausto, R.S., Kjeldsen, K.K., Dachauer, A. et al. (2022) Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-august 2021 atmospheric river. Geophysical Research Letters, 49. https://doi.org/10.1029/2021GL097356
Bromwich, D.H., Cullather, R.I., Chen, Q.-S. & Csathó, B.M. (1998) Evaluation of recent precipitation studies for Greenland ice sheet. Journal of Geophysical Research, D: Atmospheres, 103, 26007–26024.
Delhasse, A., Kittel, C., Amory, C., Hofer, S., van As, D., Fausto, R.S. et al. (2020) Brief communication: evaluation of the near-surface climate in ERA5 over the Greenland ice sheet. The Cryosphere, 14, 957–965.
Doyle, S.H., Hubbard, A., van de Wal, R.S.W., Box, J.E., van As, D., Scharrer, K. et al. (2015) Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geoscience, 8, 647–653.
Doyle, J.D. & Shapiro, M.A. (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus Series A: Dynamic Meteorology and Oceanography, 51, 728–748.
Durran, D.R. (1990) Mountain waves and downslope winds. In: Banta, R.M., Berri, G., Blumen, W., Carruthers, D.J., Dalu, G.A., Durran, D.R. et al. (Eds.) Atmospheric processes over complex terrain. Boston, MA: American Meteorological Society, pp. 59–81.
Edel, L., Claud, C., Genthon, C., Palerme, C., Wood, N., L'Ecuyer, T. et al. (2020) Arctic snowfall from CloudSat observations and Reanalyses. Journal of Climate, 33, 2093–2109.
Ettema, J., van den Broeke, M.R., van Meijgaard, E., van de Berg, W.J., Bamber, J.L., Box, J.E. et al. (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophysical Research Letters, 36, D06116.
Fausto, R.S., As, D., Box, J.E., Colgan, W., Langen, P.L. & Mottram, R.H. (2016) The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophysical Research Letters, 43, 2649–2658.
Fausto, R.S., van As, D., Box, J.E., Colgan, W. & Langen, P.L. (2016) Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using In-situ observations. Frontiers in Earth Science, 4.
Fausto, R.S., van As, D., Mankoff, K.D., Vandecrux, B., Citterio, M., Ahlstrøm, A.P. et al. (2021). Programme for monitoring of the greenland ice sheet (PROMICE) automatic weather station data. Earth System Science Data, 13(8), 3819–3845.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J.H., Lenaerts, J.T.M., van den Broeke, M.R. et al. (2013) Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 469–489.
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C.J. et al. (2020) GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland ice sheet. The Cryosphere, 14, 3935–3958.
Førland, E.J. & Norske Meteorologiske Institutt, Nordic Working Group on Precipitation (NWGP). (1996) Manual for operational correction of Nordic precipitation data. Oslo: Norwegian Meteorological Institute.
Francis, J. & Skific, N. (2015) Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 373(2054).
Fridlind, A.M., Ackerman, A.S., McFarquhar, G., Zhang, G., Poellot, M.R., DeMott, P.J. et al. (2007) Ice properties of single-layer stratocumulus during the mixed-phase Arctic cloud experiment: 2. Model results. Journal of Geophysical Research, 112. https://doi.org/10.1029/2007JD008646
Garvelmann, J., Pohl, S. & Weiler, M. (2014) Variability of observed energy fluxes during rain-on-snow and clear sky snowmelt in a Midlatitude Mountain environment. Journal of Hydrometeorology, 15, 1220–1237.
Geldenhuys, M., Preusse, P., Krisch, I., Zülicke, C., Ungermann, J., Ern, M. et al. (2021) Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event. Atmospheric Chemistry & Physics, 21, 10393–10412.
Goodison, B.E., Louie, P.Y.T. & Yang, D. (1998) Solid precipitation measurement Intercomparison. Geneva, Switzerland: World Meteorological Organization.
Haklay, M. & Weber, P. (2008) OpenStreetMap: user-generated street maps. IEEE Pervasive Computing, 7, 12–18.
Harden, B.E., Renfrew, I.A. & Petersen, G.N. (2011) A climatology of wintertime barrier winds off Southeast Greenland. Journal of Climate, 24, 4701–4717.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J. et al. (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049.
Hock, R. & Holmgren, B. (2005) A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. Journal of Glaciology, 51, 25–36.
Hofer, S., Tedstone, A.J., Fettweis, X. & Bamber, J.L. (2019) Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nature Climate Change, 9, 523–528.
Howat, I.M., Negrete, A. & Smith, B.E. (2014) The Greenland ice mapping project (GIMP) land classification and surface elevation data sets. The Cryosphere, 8, 1509–1518.
Huai, B., van den Broeke, M.R. & Reijmer, C.H. (2020) Long-term surface energy balance of the western Greenland ice sheet and the role of large-scale circulation variability. The Cryosphere, 14, 4181–4199.
Huai, B., van den Broeke, M.R., Reijmer, C.H. & Cappellen, J. (2021) Quantifying rainfall in Greenland: a combined observational and modelling approach. Journal of Applied Meteorology and Climatology, 60, 1171–1188. https://doi.org/10.1175/JAMC-D-20-0284.1
Huai, B., van den Broeke, M.R., Reijmer, C.H. & Noël, B. (2022) A daily 1-km resolution Greenland rainfall climatology (1958–2020) from statistical downscaling of a regional atmospheric climate model. Journal of Geophysical Research, 127.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H. et al. (2015) The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93, 5–48.
Køltzow, M., Casati, B., Bazile, E., Haiden, T. & Valkonen, T. (2019) An NWP model Intercomparison of surface weather parameters in the European Arctic during the year of polar prediction special observing period northern hemisphere 1. Weather and Forecasting, 34, 959–983.
Køltzow, M., Casati, B., Haiden, T. & Valkonen, T. (2020) Verification of solid precipitation forecasts from numerical weather prediction models in Norway. Weather and Forecasting, 35, 2279–2292.
Koyama, T. & Stroeve, J. (2019) Greenland monthly precipitation analysis from the Arctic system reanalysis (ASR): 2000–2012. Polar Science, 19, 1–12.
Mattingly, K.S., Mote, T.L. & Fettweis, X. (2018) Atmospheric river impacts on Greenland ice sheet surface mass balance. Journal of Geophysical Research, 123, 8538–8560.
Mattingly, K.S., Ramseyer, C.A., Rosen, J.J., Mote, T.L. & Muthyala, R. (2016) Increasing water vapor transport to the Greenland ice sheet revealed using self-organizing maps: INCREASING Greenland MOISTURE TRANSPORT. Geophysical Research Letters, 43, 9250–9258.
Menchaca, M.Q. & Durran, D.R. (2017) Mountain waves, downslope winds, and low-level blocking forced by a Midlatitude cyclone encountering an isolated ridge. Journal of the Atmospheric Sciences, 74, 617–639.
Mernild, S.H., Hanna, E., McConnell, J.R., Sigl, M., Beckerman, A.P., Yde, J.C. et al. (2015) Greenland precipitation trends in a long-term instrumental climate context (1890–2012): evaluation of coastal and ice core records. International Journal of Climatology, 35, 303–320.
Meyers, M.P., DeMott, P.J. & Cotton, W.R. (1992) New primary ice-nucleation parameterizations in an explicit cloud model. Journal of Applied Meteorology and Climatology, 31, 708–721.
Neff, W., Compo, G.P., Martin, R.F. & Shupe, M.D. (2014) Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. Journal of Geophysical Research: Atmospheres, 119, 6520–6536.
Niwano, M., Aoki, T., Hashimoto, A., Matoba, S., Yamaguchi, S., Tanikawa, T. et al. (2018) NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland ice sheet. The Cryosphere, 12, 635–655.
Niwano, M., Aoki, T., Matoba, S., Yamaguchi, S., Tanikawa, T., Kuchiki, K. et al. (2015) Numerical simulation of extreme snowmelt observed at the SIGMA-A site, Northwest Greenland, during summer 2012. The Cryosphere, 9, 971–988.
Niwano, M., Box, J.E., Wehrlé, W., Vandecrux, B., Colgan, W.T. & Cappelen, J. (2021) Rainfall on the Greenland ice sheet: present-day climatology from a high-resolution non-hydrostatic polar regional climate model. Geophysical Research Letters, 48(15), e2021GL092942.
Noël, B., van de Berg, W.J., Lhermitte, S. & van den Broeke, M.R. (2019) Rapid ablation zone expansion amplifies North Greenland mass loss. Science Advances, 5, eaaw0123.
Noël, B., van de Berg, W.J., Lhermitte, S., Wouters, B., Machguth, H., Howat, I. et al. (2017) A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 8, 1–8.
Noël, B., van de Berg, W.J., Lhermitte, S., Wouters, B., Schaffer, N. & van den Broeke, M.R. (2018) Six decades of glacial mass loss in the Canadian arctic archipelago. Journal of Geophysical Research—Earth Surface, 123, 1430–1449.
Noël, B., van de Berg, W.J., van Meijgaard, E., Kuipers, M.P., van de Wal, R.S.W. & van den Broeke, M.R. (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland ice sheet. The Cryosphere, 9, 1831–1844.
Noël, B., van de Berg, W.J., van Wessem, J.M., van Meijgaard, E., van As, D., Lenaerts, J.T.M. et al. (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2—part 1: Greenland (1958–2016). The Cryosphere, 12, 811–831.
Oltmanns, M., Straneo, F. & Tedesco, M. (2019) Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions. The Cryosphere, 13, 815–825.
Outten, S. (2008) A reverse tip jet during the Greenland flow distortion experiment. Weather, 63, 226–229.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K. et al. (2018) ArcticDEM RELEASE 7, v3.0. ArcticDEM.
Rohrer, M. (1989) Determination of the transition air temperature from snow to rain and intensity of precipitation. Geneva: World Meteorological Organization. scikit-image. (Accessed 2020). https://scikit-image.org/
Sevruk, B., Hertig, J.-A. & Spiess, R. (1991) The effect of a precipitation gauge orifice rim on the wind field deformation as investigated in a wind tunnel. Atmospheric Environment. Part A. General Topics, 25, 1173–1179.
Sevruk, B., Ondrás, M. & Chvíla, B. (2009) The WMO precipitation measurement intercomparisons. Atmospheric Research, 92, 376–380.
Smith, R.B. & Barstad, I. (2004) A linear theory of orographic precipitation. Journal of the Atmospheric Sciences, 61, 1377–1391.
Tedesco, M. & Fettweis, X. (2020) Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere, 14, 1209–1223.
van den Broeke, M.R., Enderlin, E.M., Howat, I.M., Kuipers, M.P., Noël, B.P.Y., van de Berg, W.J. et al. (2016) On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.
van Meijgaard, E., Van Ulft, L.H. & Van de Berg, W.J. (2008) The KNMI regional atmospheric climate model RACMO, version 2.1.
Van Wessem, J.M., Reijmer, C.H. & Lenaerts, J.T.M. (2014) Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. The Cryosphere, 8(1), 125–135.
Wehrlé, A., Box, J.E., Vandecrux, B. & Mankoff, K. (2021) Gapless semi-empirical daily snow and ice albedo from Sentinel-3 OLCI.
Würzer, S., Jonas, T., Wever, N. & Lehning, M. (2016) Influence of initial snowpack properties on runoff formation during rain-on-snow events. Journal of Hydrometeorology, 17, 1801–1815.
Yang, D., Goodison, B.E., Metcalfe, J.R., Golubev, V.S., Elomaa, E., Gunther, T. et al. (1995) Accuracy of tretyakov precipitation gauge: result of WMO intercomparison. Hydrological Processes, 9, 877–895.
Yang, D., Ishida, S., Goodison, B.E. & Gunther, T. (1999) Bias correction of daily precipitation measurements for Greenland. Journal of Geophysical Research: Atmospheres, 104, 6171–6181.
Yang, X., Nielsen, K.P., Dahlbom, M., Amstrup, B., Peralta, C., Høyer, J. et al. (2020) C3S Arctic regional reanalysis—full system documentation. Reading, UK and Bonn, Germany: Copernicus Climate Change Service (C3S).