[en] The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.
Disciplines :
Microbiology
Author, co-author :
Delacuvellerie, Alice; Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium
Brusselman, Axelle ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU) ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Cyriaque, Valentine; Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium, Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
Benali, Samira; Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
Moins, Sébastien; Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
Raquez, Jean-Marie; Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
Gobert, Sylvie ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Wattiez, Ruddy; Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium. Electronic address: ruddy.wattiez@umons.ac.be
Language :
English
Title :
Long-term immersion of compostable plastics in marine aquarium: Microbial biofilm evolution and polymer degradation.
This study was funded by the Fund for Scientific Research (F.R.S.-FNRS) FC 23347 . We thank the Aquarium-Museum of Liège and particularly Marie Bournonville and her colleagues. Samira Benali acknowledges support from the - European Regional Development Fund (ERDF-FEDER) for general support in the frame of LCFM-BIOMAT. Jean-Marie Raquez is an F.R.S.-FNRS Research Associate, and Valentine Cyriaque is a F.R.S.-FNRS scientific collaborator.This study was funded by the Fund for Scientific Research (F.R.S.-FNRS) FC 23347. We thank the Aquarium-Museum of Liège and particularly Marie Bournonville and her colleagues. Samira Benali acknowledges support from the - European Regional Development Fund (ERDF-FEDER) for general support in the frame of LCFM-BIOMAT. Jean-Marie Raquez is an F.R.S.-FNRS Research Associate, and Valentine Cyriaque is a F.R.S.-FNRS scientific collaborator.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arrieta, M.P., López, J., Rayón, E., Jiménez, A., Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym. Degrad. Stab. 108 (2014), 307–318.
Bagheri, A.R., Laforsch, C., Greiner, A., Agarwal, S., Fate of so-called biodegradable polymers in seawater and freshwater. Global Chall., 1, 2017, 1700048.
Basili, M., Quero, G.M., Manini, E., Vignaroli, C., Avio, C.G., De Marco, R., Lundi, G.M., Major role of surrounding environment in shaping biofilm community composition on marine plastic debris. Front. Mar. Sci., 7, 2020, 262.
Bastarrachea, L., Dhawan, S., Sablani, S.S., Mah, J.H., Kang, D.H., Zhang, J., Tang, J., Biodegradable poly (butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against listeria innocua. J. Food Sci. 75:4 (2010), 215–224.
Beltran-Sanahuja, A., Casado-Coy, N., Simo-Cabrera, L., Sanz-Lazaro, C., Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut., 259, 2020, 113836.
Benali, S., Aouadi, S., Dechief, A.-L., Murariu, M., Dubois, P., Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1 (2015), 51–60.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37 (2019), 852–857.
Bonhomme, S., Cuer, A., Delort, A.-M., Lemaire, J., Sancelme, M., Scott, G., Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81 (2003), 441–452.
Chen, J., Bittinger, K., Charlson, E.S., Hoffmann, C., Lewis, J., Wu, G.D., Li, H., Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28 (2012), 2106–2113.
Cheng, J., Jacquin, J., Conan, P., Pujo-Pay, M., Barbe, V., George, M., Fabre, P., Bruzaud, S., et al. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol., 11, 2021, 610231.
Coulon, F., McKew, B.A., Osborn, A.M., McGenity, T.J., Timmis, K.N., Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ. Microbiol. 9 (2007), 177–186.
De Monte, C., Locritani, M., Merlino, S., Ricci, L., Pistolesi, A., Bronco, S., An in situ experiment to evaluate the aging and degradation phenomena induced by marine environment conditions on commercial plastic granules. Polymers, 14, 2022, 1111.
De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., Ruttink, T., Dawyndt, P., Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49 (2015), 9629–9638.
De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., Cattrijsse, A., Dawyndt, P., Ruttink, T., Vangeyte, J., The temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ. Sci. Technol. 49 (2017), 9629–9638.
De Tender, C., Schlundt, C., Devriese, L.I., Mincer, T.J., Zettler, E.R., Amaral-Zettler, L.A., A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods 9 (2017), 2132–2143.
Debroas, D., Mone, A., Halle, A., Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 599–600 (2017), 1222–1232.
Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., Wattiez, R., The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater., 380, 2019, 120899.
Delacuvellerie, A., Benali, S., Cyriaque, V., Moins, S., Raquez, J.-M., Gobert, S., Wattiez, R., Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater., 419, 2021, 126526 ISSN 0304-3894.
Delacuvellerie, A., Géron, A., Gobert, S., Wattiez, R., New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea. Environ. Pollut., 15(295), 2022, 118678.
Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., Cesar, G., Bruzaud, S., Accelerated ageing of polylactide in aqueous environments: comparative study between distilled water and seawater. Polym. Degrad. Stab., 108, 2014, 319.
DeSantis, Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72(7), 2006.
Dixon, P., VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14 (2003), 927–930.
Donlan, R.M., Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8:9 (2002), 881–890.
Elifantz, H., Horn, G., Ayon, M., Cohen, Y., Minz, D., Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85:2 (2013), 348–357.
Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9 (2016), 563–575.
Fuchs, B.M., Spring, S., Teeling, H., Quast, C., Wulf, J., et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl. Sci. USA 104 (2007), 2891–2896.
Geyer, R., Jambeck, J.R., Law, K.L., Production, use, and fate of all plastics ever made. Sci. Adv., 3, 2017, 1700782.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:1 (2001), 9–18.
Jacquin, J., Callac, N., Cheng, J., Giraud, C., Gorand, Y., Denoual, C., Pujo-Pay, M., Conan, P., Meistertzheim, A.-L., Barbe, V., Bruzaud, S., Ghiglione, J.-F., Microbial diversity and activity during the biodegradation in seawater of various substitutes to conventional plastic cotton swab sticks. Front. Microbiol., 12, 2021, 604395.
Jacquiod, S., Cyriaque, V., Riber, L., Abu Al-soud, W., Gillan, C.G., Wattiez, R., Sorensen, S.J., Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J. Hazard. Mater. 344 (2018), 299–307.
Kappell, A.D., Wei, Y., Newton, R.J., Van Nostrand, J.D., Zhou, J., McLellan, S.L., Hristova, K.R., The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front. Microbiol., 5, 2014, 205.
Karamanlioglu, M., Preziosi, R., Robson, G.D., Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stab. 137 (2017), 122–130.
Kedzierski, M., d'Almeida, M., Le Grand, A., Duval, H., César, G., et al., Magueresse, A., Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Mar. Pollut. Bull. 127 (2018), 315–323.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:11 (2010), 1463–1464.
Kirstein, I.V., Wichels, A., Krohne, G., Gerdts, G., Mature biofilm communities on synthetic polymers in seawater - specific or general?. Mar. Environ. Res. 142 (2018), 147–154.
Mahoney, K.W., Talbert, J.N., Goddard, J.M., Effect of polyethylene glycol tether size and chemistry on the attachment of lactase to polyethylene films. J. Appl. Polym. Sci. 127:2 (2013), 1203–1210.
Muthuraj, R., Misra, M., Mohanty, A.K., Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J. Appl. Polym. Sci., 132, 2015.
Nakayama, A., Yamano, N., Kawasaki, N., Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stab. 166 (2019), 290–299 ISSN 0141-3910.
Narancic, T., Verstichel, S., Chaganti, S.R., Morales-Gamez, L., Kenny, S.T., De Wilde, B., Padamati, R.B., O'Connor, K.E., Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a Panacea for plastic pollution. Environ. Sci. Technol. 52:18 (2018), 10441–10452.
Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P.E., Johansen, A., Brandt, K.K., Priemé, A., Sorensen, S.J., Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microb. Ecol., 92(11), 2016.
Odobel, C., Dussud, C., Philip, L., Derippe, G., Lauters, M., Eyheraguibel, B., Burgaud, G., Ter Halle, A., Meistertzheim, A.-L., Bruzaud, S., Barbe, V., Ghiglione, J.-F., Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front. Microbiol., 12, 2021, 734782.
Paradis, E., Claude, J.Strimmer K., APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20:2 (2004), 289–290.
Paul, M.-A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P., Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. macromolRapid Commun. 24:9 (2003), 561–566.
Pinto, M., Langer, T.M., Huffer, T., Hofmann, T., Herndl, G.J., The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One, 2019(14), 2019, e0217165.
Prakash, B., Veeregowda, B.M., Krishnappa, G., Biofilms: a survival strategy of bacteria. Curr. Sci. 85:9 (2003), 1299–1307.
Rheinberger, T., Wolfs, J., Paneth, A., Gojzewski, H., Paneth, P., Wurm, F.R., RNA-inspired and accelerated degradation of polylactide in seawater. J. Am. Chem. Soc. 143:40 (2021), 16673–16681.
Romanenko, L.A., Tanaka, N., Mikhailov, V.V., Frolova1, G.M., Marinicella litoralis gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int. J. Syst. Evol. Microbiol. 60 (2010), 1613–1619.
Roy, P.K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., Rajagopal, C., Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym. Degrad. Stab. 93:10 (2008), 1917–1922.
Ruggero, F., Onderwater, R.C.A., Carretti, E., Roosa, S., Benali, S., Raquez, J.-M., Goru, R., Lubello, C., Wattiez, R., Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting. J. Polym. Environ. 29 (2021), 3015–3028.
Stegen, J.C., Lin, X., Konopka, A.E., Fredrickson, J.K., Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6 (2012), 1653–1664.
Tischer, K., Kleinsteuber, S., Schleinitz, K.M., Fetzer, I., Spott, O., et al. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ. Microbiol. 15:9 (2013), 2603–2615.
Tsuji, H., Ikada, Y., Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polym.Degrad. Stab. 67:1 (2000), 179–189.
Tsuji, H., Suzuyoshi, K., Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polym. Degrad. Stab., 75, 2002, 357.
Vaksmaa, A., Hernando-Morales, V., Zeghal, E., Niemann, H., Microbial degradation of marine plastics: current state and future prospects. Joshi, S.J., et al. (eds.) Biotechnology for Sustainable Environment, 2021, 111–154.
Vaksmaa, A., Knittel, K., Abdala, A.A., et al. Microbial communities on plastic polymers in the Mediterranean Sea. Front. Microbiol., 12, 2021, 1021.
Wang, F., Li, C., Wang, H., Chen, W., Huang, Q., Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. Int. Biodeterior. Biodegrad. 115 (2016), 286–292.
Wang, X.-Q., Li, C.-M., Dunlap, C.A., Rooney, A.P., Du, Z.-J., Int. J. Syst. Evol. Microbiol. 68 (2018), 2335–2339.
Wang, X.-W., Wang, G.-X., Huang, D., Lu, B., Zhen, Z.-C., Ding, Y., Ren, Z.-L., Wang, P.-L., Zhang, W., Ji, J.-H., Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. J. Appl. Polym. Sci., 2019, 46916.
Wang, G.-X., Huang, D., Ji, J.-H., Völker, C., Wurm, F.R., Seawater-degradable polymers—fighting the marine plastic pollution. Adv. Sci., 8, 2021, 2001121.
Webb, C.O., Ackerly, D.D., Kembel, S.W., Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24 (2008), 2098–2100.
Wei, X.-F., Bohlén, M., Lindblad, C., Hedenqvist, M., Hakonen, A., Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res., 198, 2021, 117123.
Wilcox, C., Van Sebille, E., Hardesty, B.D., Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. U. S. A. 112:38 (2015), 11899–11904.
Woodall, L.C., Jungblut, A.D., Hopkins, K., Hall, A., Robinson, L.F., Gwinnett, C., Paterson, G.L.J., Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS One, 13, 2018, e0206220.
Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., Life in the “plastisphere”: microbial communities on plastics marine debris. Environ. Sci. Technol. 47:13 (2013), 7137–7146.
Plastics, the facts. 2020, European Plastics.
Bioplastics Market Data Report. 2018, European Bioplastics.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.