A method for rapid and homogenous initiation of post-harvest physiological deterioration in cassava storage roots identifies Indonesian cultivars with improved shelf-life performance.
Zainuddin, Ima M; Lecart, Brieuc; Sudarmonowati, Ennyet al.
[en] Cassava is the most cultivated and consumed root crop in the world. One of the major constraints to the cassava value chain is the short shelf life of cassava storage roots which is primarily due to the so-called post-harvest physiological deterioration (PPD). The identification of natural sources of PPD tolerance represents a key approach to mitigating PPD losses by generating farmer- and industry-preferred cassava cultivars with prolonged shelf life. In the present study, a PPD assessment method was developed to screen for PPD tolerance in the cassava germplasm. The proposed PPD assessment method displayed a reduced rate of microbial infection and allowed a rapid and homogenous development of typical PPD symptoms in the cassava storage roots. We successfully used the PPD assessment method in combination with an image-based PPD scoring method to identify and characterize PPD tolerance in 28 cassava cultivars from the Indonesian cassava germplasm. Our analysis showed a significant and positive correlation between PPD score and dry matter content (r = 0.589-0.664, p-value < 0.001). Analysis of additional root parameters showed a significant and positive correlation between PPD scores at 2 days post-harvest (dph) and root length (r = 0.388, p-value < 0.05). Our analysis identified at least 4 cultivars displaying a significantly delayed onset of PPD symptoms as compared to the other selected cultivars. The availability of cassava cultivars contrasting for tolerance to PPD will be particularly instrumental to understanding the molecular mechanisms associated with delayed PPD in cassava roots.
Zainuddin, Ima M; Department of Biology, Plant Biotechnology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland. ima.zainuddin@kuleuven.be ; Department of Biosystems, KU Leuven, Willem de Croylaan 42, Box 2455, 3001, Louvain, Belgium. ima.zainuddin@kuleuven.be ; Institut Teknologi Bandung (ITB), Jl. Ganesha 10, Bandung, 40132, Indonesia. ima.zainuddin@kuleuven.be ; Research Center for Genetics Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong, 16911, Indonesia. ima.zainuddin@kuleuven.be
Lecart, Brieuc ; Université de Liège - ULiège > TERRA Research Centre
Sudarmonowati, Enny; Research Center for Genetics Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
Vanderschuren, Hervé ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences ; Department of Biology, Plant Biotechnology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland. herve.vanderschuren@kuleuven.be ; Department of Biosystems, KU Leuven, Willem de Croylaan 42, Box 2455, 3001, Louvain, Belgium. herve.vanderschuren@kuleuven.be
Language :
English
Title :
A method for rapid and homogenous initiation of post-harvest physiological deterioration in cassava storage roots identifies Indonesian cultivars with improved shelf-life performance.
This work was supported by the Sawiris Foundation for Social Development through Engineering for Development (E4D) doctoral scholarship program (ETH Global) and P3MI ITB fund to I.M.Z. as well as by a FOSC ERA-NET grant (PHEALING).We thank Prof. Wilhelm Gruissem for access to laboratory facilities at ETHZ and Sarah Grimm from Seminar for Statistics ETHZ for valuable statistical consultation. We thank Dr. Sri Hartati, Ibu Hartati, Nawawi and the team from BRIN for their help in the whole process during the PPD assessment.
Balitkabi. (2017). Pendekatan Baru Pemanfaatan Ubi Kayu untuk Industri Makanan Indonesia. http://balitkabi.litbang.pertanian.go.id/berita/pendekatan-baru-pemanfaatan-ubi-kayu-untuk-industri-makanan-indonesia/
Beyene G, Chauhan RD, Gehan J, Siritunga D, Taylor N. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration. Plant Mol Biol. 2022;109(3):283–99.
Booth RH. Cassava storage post-harvest deterioration and storage of fresh cassava roots. Colombia: CIAT; 1975.
Bradbury MG, Egan SV, Bradbury JH. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J Sci Food Agric. 1999;79(4):593–601.
Buschmann H. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of Cassava (Manihot esculenta Crantz). Ann Bot. 2000;86(6):1153–60.
Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. Cassava breeding: opportunities and challenges. Plant Mol Biol. 2004;56:503–15.
Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem. 2007;55(18):7469–76.
Ceballos H, Okogbenin E, Pérez JC, Lopez-Valle LAB, Debouck D. Cassava. In: Bradshaw JE, editor. Root and tuber crops handbook of plant breeding. Berlin: Springer; 2010.
Ceballos H, Hershey C, Becerra-López-Lavalle LA. New approaches to cassava breeding. Plant Breed Rev. 2012;36:427–504.
Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA. Variation of quality traits in cassava roots evaluated in cultivars and improved clones. Euphytica. 2005;143:1–2.
Coelho DG, Fonseca KS, de Mélo Neto DF, de Andrade MT, Coelho Junior LF, Ferreira-Silva SL, do Nascimento Simões A. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava. J Food Biochem. 2019;43: e12840.
Cortés DF, Reilly K, Okogbenin E, Beeching JR, Iglesias C, Tohme J. Mapping genes implicated in post-harvest physiological deterioration (PPD) in cassava (Manihot esculenta Crantz). Euphytica. 2002;128:47–53.
FAO (2008). Food and agriculture organization of the United Nations, Rome. Italy. http://www.fao.org/news/.
FAO/IFAD. The world cassava economy facts trends and Outlook. Rome: The Global Cassava Development Strategy; 2000.
FAOSTAT (2020). faostat.fao.org.
García JA, Sánchez T, Ceballos H, Alonso L. Non-destructive sampling procedure for biochemical or gene expression studies on post-harvest physiological deterioration of cassava roots. Postharvest Biol Technol. 2013;86:529–35.
Kawano K, Rojanaridpiched C. Genetic study on postharvest root deterioration in cassava. The Kasetsart J. 1983;17:14–26.
Kizito EB, Rönnberg-Wästljung A-C, Egwang T, Gullberg U, Fregene M, Westerbergh A. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas. 2007;144(4):129–36.
Luna J, Dufour D, Tran T, Pizarro M, Calle F, García Domínguez M, Hurtado IM, Sánchez T, Ceballos H. Post-harvest physiological deterioration in several cassava genotypes over sequential harvests and effect of pruning prior to harvest. Int J Food Sci Technol. 2021;56:1322–32.
Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P. Knockdown of p-coumaroyl shikimate/Quinate 3’-Hydroxylase delays the occurrence of post-harvest physiological deterioration in Cassava storage roots. Int J Mol Sci. 2022;23(16):9231.
Mbinda W, Mukami A. Breeding for postharvest physiological deterioration in cassava: problems and strategies. CABI Agric Biosci. 2022;3:1.
Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL, Fregene M. Tolerance to postharvest physiological deterioration in Cassava roots. Crop Sci. 2010;50(4):1333.
Naziria D, Quayeb W, Siwokuc B, Wanlapatitd S, Viet Phue T, Bennetf B. The diversity of postharvest losses in cassava value chains in selected developing countries. J Agric Rural Dev Trop Ans Subtrop. 2014;115(2):111–23.
Nduwumuremyi A, Melis R, Shanahan P, Theodore A. Interaction of genotype and environment effects on important traits of cassava (Manihot esculenta Crantz). Crop J. 2017;5(5):2214–5141.
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol. 2022;3:1–19.
Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J Cell Mol Biol. 2011;67(1):145–56.
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021.
Rahmawati RK, Khumaida N, Ardie SW, Sukma D, Sudarso. Effects of harvest period, storage, and genotype on postharvest physiological deterioration responses in cassava. Biodiversitas. 2021;23:100–9.
Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol. 2007;64(1–2):187–203.
Rudi N, Norton GW, Alwang J, Asumugha G. Economic impact analysis of marker-assisted breeding for resistance to pests and post- harvest deterioration in cassava. Afr J Agric Resource Econom. 2010;4(2):110–22.
Salcedo A, Siritunga D. Insights into the physiological, biochemical and molecular basis of postharvest deterioration in Cassava (Manihot esculenta) roots. Am J Exp Agric. 2011;1(4):414–31.
Salcedo A, Valle AD, Sanchez B, Ocasio V, Ortiz A, Marquez P, Siritunga D. Comparative evaluation of physiological post-harvest root deterioration of cassava (Manihot esculenta) cultivars visual vs hydroxycoumarins fluorescent accumulation analysis. Afr J Agric Res. 2010;5(22):3138–44.
Sánchez T, Dufour D, Moreno JL, Pizarro M, Aragón IJ, Domínguez M, Ceballos H. Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biol Technol. 2013;86:520–8.
Taniguchi T, Data ES, Burden OJ. Production of antifungal substances in cassava roots response to physiological and microbial deterioration. In: Uritani ED, Reyes, editors. Tropical root crops: postharvest physiology and processing. Tokyo: Japanese Science Society Press; 1984. p. 145–9.
Tumuhimbise R, Melis R, Shanahan P. Genetic variation in cassava for postharvest physiological deterioration. Arch Agron Soil Sci. 2014;9:1333.
Tumuhimbise R, Shanahan P, Melis R, Kawuki R. Genetic variation and association among factors influencing storage root bulking in cassava. J Agric Sci. 2015;153(7):1267–80.
Van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric. 2000;80(13):1866–73.
Vanderschuren H, Agusti J. Storage roots. Curr Biol. 2022;32(12):R607.
Vanderschuren H, Nyaboga E, Poon JS, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W. Large-scale proteomics of the Cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell. 2014;26(5):1913–24.
Vlaar PWL, van Beek P, Visser RGF. Genetic modification and its impact on industry structure and performance: post-harvest deterioration of cassava in Thailand. J Chain Network Sci. 2007;7:133–42.
Wenham JE. Post-harvest deterioration of cassava a biotechnological perspective. Rome: FAO; 1995.
Wheatley C, Gómez G. Evaluation of some quality characteristics in cassava storage roots. Qualitas Plantarum Plant Foods for Human Nutrition. 1985;35(2):121–9.
Wheatley C, Lozano C, Gomez G. Post-harvest deterioration of cassava roots. In: Cock JH, Reyes JA, editors. Cassava research production and utilization. Cali: UNDP-CIAT; 1985. p. 655–71.
Wu X, Xu J, Ma Q, Ahmed S, Lu X, Ling E, Zhang P. Lysozyme inhibits postharvest physiological deterioration of cassava. J Integr Plant Biol. 2022;64(3):621–4.
Xu J, Duan X, Yang J, Beeching JR, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol. 2013;161(3):1517–28.
Yan Y, Zhao S, Ding Z, Tie W, Hu W. Comparative transcriptomic analysis of storage roots in cassava during postharvest physiological deterioration. Plant Mol Biol Report. 2021;39:607–16.
Zainuddin IM, Fathoni A, Sudarmonowati E, Beeching JR, Gruissem W, Vanderschuren H. Cassava post-harvest physiological deterioration: from triggers to symptoms. Postharvest Biol Technol. 2018;142:115–23.
Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root via reduction of reactive oxygen species production. Plant Physiol. 2012;159(4):1396–407.