[en] Bone fractures are one of the most common traumatic large-organ injuries and although many fractures can heal on their own, 2-12% of fractures are slow healing or do not heal (nonunions). Autologous grafts are currently used for treatment of nonunions but are associated with limited healthy bone tissue. Tissue engineered cell-based products have promise for an alternative treatment method. It was previously demonstrated that cartilaginous microspheroids of periosteum-derived cells could be assembled into scaffold-free constructs and heal murine critically-sized long bone defects (nonunions). However, the handleability of such scaffold-free implants can be compromised when scaling-up. In this work, cartilaginous spheroids were combined with melt electrowritten (MEW) meshes to create an engineered cell-based implant, able to induce in vivo bone formation. MEW polycaprolactone meshes were tailored to contain pores (116 ± 28 µm) of a size that captured microspheroids (180 ± 15 µm). Periosteum-derived microspheroids pre-cultured for 4 days, were seeded on MEW meshes and gene expression analysis demonstrated up-regulation of chondrogenic (SOX9, COL2) and prehypertrophic (VEGF) gene markers after 14 days, creating a biohybrid sheet. When implanted subcutaneously (4 weeks), the biohybrid sheets mineralized (23 ± 3 % MV/TV) and formed bone and bone marrow. Bone formation was also observed when implanted in a murine critically-sized long bone defect, though a high variation between samples was detected. The high versatility of this biofabrication approach lies in the possibility to tailor the scaffolds to shape and dimensions corresponding to the large bone defects and the individual patient using robust bone forming building blocks. These strategies are instrumental in the development of personalized regenerative therapies with predictive clinical outcomes. STATEMENT OF SIGNIFICANCE: : Successful treatments for healing of large long bone defects are still limited and 2-12% of fractures do not heal properly. We combined a novel biofabrication technique: melt electrowriting (MEW), with robust biology: bone forming cartilaginous spheroids to create biohybrid sheets able to form bone upon implantation. MEW enabled the fabrication of scaffolds with micrometer-sized fibers in defined patterns which allowed the capturing of and merging with cartilaginous spheroids which had the potency to mature into bone via the developmental process of endochondral ossification. The present study contributes to the rapidly growing field of "Biofabrication with Spheroid and Organoid Materials'' and demonstrates design considerations that are of great importance for biofabrication of functional tissues through the assembly of cellular spheroids.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Hall, Gabriella Nilsson; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium, Skeletal
Chandrakar, Amit; Department of Complex Tissue Regeneration, Maastricht University, The
Pastore, Angela; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium, Skeletal
Ioannidis, Konstantinos; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium, Skeletal
Moisley, Katrina; The Electrospinning Company Ltd, England.
Cirstea, Matei; The Electrospinning Company Ltd, England.
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium, Biomechanics
Moroni, Lorenzo; Department of Complex Tissue Regeneration, Maastricht University, The
Luyten, Frank P; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium.
Wieringa, Paul; Department of Complex Tissue Regeneration, Maastricht University, The
Papantoniou, Ioannis; Prometheus, Div. of Skeletal Tissue Engineering, KU Leuven, Belgium, Skeletal
Language :
English
Title :
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids.
Marsell, R., Einhorn, T.A., The biology of fracture healing. Injury 42 (2011), 551–555, 10.1016/j.injury.2011.03.031.
Calori, G., Albisetti, W., Agus, A., Iori, S., Tagliabue, L., Risk factors contributing to fracture non-unions. Injury 38 (2007), S11–S18, 10.1016/S0020-1383(07)80004-0.
Dailey, H.L., Wu, K.A., Wu, P.S., McQueen, M.M., Court-brown, tibial fracture nonunion and time to healing after reamed intramedullary nailing: risk factors based on a single-center review of 1003 patients. J. Orthop. Trauma 32 (2018), e263–e269, 10.1097/BOT.0000000000001173.
Thomas, J.D., Kehoe, J.L., Bone Nonunion. StatPearls, Treasure Isl, 2022, Treasure Island (FL).
Calori, G.M., Mazza, E., Colombo, M., Ripamonti, C., The use of bone-graft substitutes in large bone defects: any specific needs?. Injury 42:2 (2011), S56–S63, 10.1016/j.injury.2011.06.011 Suppl.
Flierl, M.A., Smith, W.R., Mauffrey, C., Irgit, K., Williams, A.E., Ross, E., Peacher, G., Hak, D.J., Stahel, P.F., Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J. Orthop. Surg. Res., 8, 2013, 1, 10.1186/1749-799X-8-33.
Lenas, P., Moos, M., Luyten, F.P., Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II. From genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. Part B Rev. 15 (2009), 395–422, 10.1089/ten.teb.2009.0461.
Lenas, P., Moos, M., Luyten, F.P., Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. Part B Rev. 15 (2009), 381–394, 10.1089/ten.TEB.2008.0575.
Aghajanian, P., Mohan, S., The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res., 6, 2018, 19, 10.1038/s41413-018-0021-z.
Papantoniou, I., Nilsson Hall, G., Loverdou, N., Lesage, R., Herpelinck, T., Mendes, L., Geris, L., Turning nature's own processes into design strategies for living bone implant biomanufacturing: a decade of developmental engineering. Adv. Drug Deliv. Rev. 169 (2021), 22–39, 10.1016/j.addr.2020.11.012.
Ouyang, L., Armstrong, J.P.K., Salmeron-Sanchez, M., Stevens, M.M., Assembling Living building blocks to engineer complex tissues. Adv. Funct. Mater. 1909009 (2020), 1–22, 10.1002/adfm.201909009.
Laschke, M.W., Menger, M.D., Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 35 (2017), 133–144, 10.1016/j.tibtech.2016.08.004.
Burdis, R., Kelly, D.J., Biofabrication and bioprinting using cellular aggregates and microtissues for the engineering of musculoskeletal tissues. Acta Biomater., 2021, 10.2139/ssrn.3739622.
McDermott, A.M., Herberg, S., Mason, D.E., Collins, J.M., Pearson, H.B., Dawahare, J.H., Tang, R., Patwa, A.N., Grinstaff, M.W., Kelly, D.J., Alsberg, E., Boerckel, J.D., Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci. Transl. Med., 11, 2019, 10.1126/scitranslmed.aav7756.
Yu, Y., Moncal, K.K., Li, J., Peng, W., Rivero, I., Martin, J.A., Ozbolat, I.T., Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep., 6, 2016, 28714, 10.1038/srep28714.
Kim, T.G., Park, S.H., Chung, H.J., Yang, D.Y., Park, T.G., Hierarchically assembled mesenchymal stem cell spheroids using biomimicking nanofilaments and microstructured scaffolds for vascularized adipose tissue engineering. Adv. Funct. Mater. 20 (2010), 2303–2309, 10.1002/adfm.201000458.
Bhumiratana, S., Eton, R.E., Oungoulian, S.R., Wan, L.Q., a Ateshian, G., Vunjak-Novakovic, G., Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 6940–6945, 10.1073/pnas.1324050111.
Skylar-Scott, M.A., Uzel, S.G.M., Nam, L.L., Ahrens, J.H., Truby, R.L., Damaraju, S., Lewis, J.A., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv., 5, 2019, eaaw2459, 10.1126/sciadv.aaw2459.
Hall, G.N., Rutten, I., Lammertyn, J., Eberhardt, J., Geris, L., Luyten, F.P., Papantoniou, I., Cartilaginous spheroid-assembly design considerations for endochondral ossification: towards robotic-driven biomanufacturing. Biofabrication, 13, 2021, 045025, 10.1088/1758-5090/ac2208.
Ovsianikov, A., Khademhosseini, A., Mironov, V., The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 36 (2018), 348–357, 10.1016/j.tibtech.2018.01.005.
Hall, G.N., Mendes, L.F., Gklava, C., Geris, L., Luyten, F.P., Papantoniou, I., Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv. Sci. 7 (2020), 1–16, 10.1002/advs.201902295.
Yajima, Y., Yamada, M., Utoh, R., Seki, M., Collagen microparticle-mediated 3D cell organization: a facile route to bottom-up engineering of thick and porous tissues. ACS Biomater. Sci. Eng. 3 (2017), 2144–2154, 10.1021/acsbiomaterials.7b00131.
Lienemann, P.S., Lutolf, M.P., Ehrbar, M., Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv. Drug Deliv. Rev. 64 (2012), 1078–1089, 10.1016/j.addr.2012.03.010.
Gjorevski, N., Ranga, A., Lutolf, M.P., Bioengineering approaches to guide stem cell-based organogenesis. Development 141 (2014), 1794–1804, 10.1242/dev.101048.
Sheehy, E.J., Kelly, D.J., O'Brien, F.J., Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater. Today Biol., 3, 2019, 100009, 10.1016/j.mtbio.2019.100009.
Vinatier, C., Guicheux, J., Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann. Phys. Rehabil. Med. 59 (2016), 139–144, 10.1016/j.rehab.2016.03.002.
Mota, C., Camarero-Espinosa, S., Baker, M.B., Wieringa, P., Moroni, L., Bioprinting: from tissue and organ development to in vitro models. Chem. Rev., 2020, 10.1021/acs.chemrev.9b00789.
De Moor, L., Fernandez, S., Vercruysse, C., Tytgat, L., Asadian, M., De Geyter, N., Van Vlierberghe, S., Dubruel, P., Declercq, H., Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids. Front. Bioeng. Biotechnol. 8 (2020), 1–20, 10.3389/fbioe.2020.00484.
Daly, A.C., Kelly, D.J., Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197 (2019), 194–206, 10.1016/j.biomaterials.2018.12.028.
Ozbolat, I.T., Chen, H., Yu, Y., Development of “Multi-arm Bioprinter” for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integr. Manuf. 30 (2014), 295–304, 10.1016/j.rcim.2013.10.005.
Sankar, S., Sharma, C.S., Rath, S.N., Enhanced osteodifferentiation of MSC spheroids on patterned electrospun fiber mats - an advanced 3D double strategy for bone tissue regeneration. Mater. Sci. Eng. C 94 (2019), 703–712, 10.1016/j.msec.2018.10.025.
Robinson, T.M., Hutmacher, D.W., Dalton, P.D., The next frontier in melt electrospinning: taming the jet. Adv. Funct. Mater., 29, 2019, 10.1002/adfm.201904664.
Brennan, C.M., Eichholz, K.F., Hoey, D.A., The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Biomed. Mater., 14, 2019, 10.1088/1748-605X/ab49f2.
Daghrery, A., Ferreira, J.A., de Souza Araújo, I.J., Clarkson, B.H., Eckert, G.J., Bhaduri, S.B., Malda, J., Bottino, M.C., A highly ordered, nanostructured fluorinated CaP-coated melt electrowritten scaffold for periodontal tissue regeneration. Adv. Healthc. Mater. 10 (2021), 1–19, 10.1002/adhm.202101152.
de Ruijter, M., Ribeiro, A., Dokter, I., Castilho, M., Malda, J., Simultaneous micropatterning of fibrous meshes and bioinks for the fabrication of living tissue constructs. Adv. Healthc. Mater., 8, 2019, 10.1002/adhm.201800418.
Galarraga, J.H., Locke, R.C., Witherel, C.E., Stoeckl, B.D., Castilho, M., Mauck, R.L., Malda, J., Levato, R., Burdick, J.A., Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair. Biofabrication, 14, 2022, 10.1088/1758-5090/ac3acb.
Eyckmans, J., Roberts, S.J., Schrooten, J., Luyten, F.P., A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J. Cell. Mol. Med. 14 (2010), 1845–1856, 10.1111/j.1582-4934.2009.00807.x.
Mendes, L.F., Tam, W.L., Chai, Y.C., Geris, L., Luyten, F.P., Roberts, S.J., Combinatorial analysis of growth factors reveals the contribution of bone morphogenetic proteins to chondrogenic differentiation of human periosteal cells. Tissue Eng. Part C Methods 22 (2016), 473–486, 10.1089/ten.tec.2015.0436.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (2012), 671–675, 10.1038/nmeth.2089.
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25 (2001), 402–408, 10.1006/meth.2001.1262.
Van Gastel, N., Stegen, S., Stockmans, I., Moermans, K., Schrooten, J., Graf, D., Luyten, F.P., Carmeliet, G., Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 32 (2014), 2407–2418, 10.1002/stem.1783.
Tam, W.L., Mendes, L.Freitas, Chen, X., Lesage, R., Van Hoven, I., Leysen, E., Kerckhofs, G., Bosmans, K., Chai, Y.C., Yamashita, A., Tsumaki, N., Geris, L., Roberts, S.J., Luyten, F.P., Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res. Ther. 12 (2021), 1–16, 10.1186/s13287-021-02580-7.
Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., Bornert, F., Offner, D., Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 9 (2018), 1–18, 10.1177/2041731418776819.
Lammens, J., Maréchal, M., Delport, H., Oppermann, H., Vukicevic, S., Luyten, F.P., A cell-based combination product for the repair of large bone defects. Bone, 2020, 115511, 10.1016/j.bone.2020.115511.
Kim, J., Bakirci, E., O'Neill, K.L., Hrynevich, A., Dalton, P.D., Fiber bridging during melt electrowriting of poly(ε-Caprolactone) and the influence of fiber diameter and wall height. Macromol. Mater. Eng., 306, 2021, 10.1002/mame.202000685.
McMaster, R., Hoefner, C., Hrynevich, A., Blum, C., Wiesner, M., Wittmann, K., Dargaville, T.R., Bauer-Kreisel, P., Groll, J., Dalton, P.D., Blunk, T., Tailored melt electrowritten scaffolds for the generation of sheet-like tissue constructs from multicellular spheroids. Adv. Healthc. Mater., 8, 2019, 10.1002/adhm.201801326.
Hrynevich, A., Elçi, B., Haigh, J.N., McMaster, R., Youssef, A., Blum, C., Blunk, T., Hochleitner, G., Groll, J., Dalton, P.D., Dimension-based design of melt electrowritten scaffolds. Small 14 (2018), 1–6, 10.1002/smll.201800232.
Dufour, A., Gallostra, X.B., O'Keeffe, C., Eichholz, K., Von Euw, S., Garcia, O., Kelly, D.J., Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials, 283, 2022, 10.1016/j.biomaterials.2022.121405.
Abbasi, N., Ivanovski, S., Gulati, K., Love, R.M., Hamlet, S., Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 24 (2020), 1–16, 10.1186/s40824-019-0180-z.
Gleadall, A., Visscher, D., Yang, J., Thomas, D., Segal, J., Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burn. Trauma 6 (2018), 1–16, 10.1186/s41038-018-0121-4.
Di Luca, A., Szlazak, K., Lorenzo-Moldero, I., Ghebes, C.A., Lepedda, A., Swieszkowski, W., Van Blitterswijk, C., Moroni, L., Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomater., 2016, 10.1016/j.actbio.2016.03.014.
Petersen, A., Princ, A., Korus, G., Ellinghaus, A., Leemhuis, H., Herrera, A., Klaumünzer, A., Schreivogel, S., Woloszyk, A., Schmidt-Bleek, K., Geissler, S., Heschel, I., Duda, G.N., A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun., 9, 2018, 10.1038/s41467-018-06504-7.
Colnot, C., Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24 (2009), 274–282, 10.1359/jbmr.081003.
Duchamp de Lageneste, O., Julien, A., Abou-Khalil, R., Frangi, G., Carvalho, C., Cagnard, N., Cordier, C., Conway, S.J., Colnot, C., Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun., 9, 2018, 773, 10.1038/s41467-018-03124-z.
Pelttari, K., Winter, A., Steck, E., Goetzke, K., Hennig, T., Ochs, B.G., Aigner, T., Richter, W., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54 (2006), 3254–3266, 10.1002/art.22136.
Farrell, E., Both, S.K., Odörfer, K.I., Koevoet, W., Kops, N., O'Brien, F.J., De Jong, R.J.B., Verhaar, J.A., Cuijpers, V., Jansen, J., Erben, R.G., Van Osch, G.J.V.M., In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet. Disord., 12, 2011, 31, 10.1186/1471-2474-12-31.
Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherberich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A., Martin, I., Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 7251–7256, 10.1073/pnas.1000302107.
van der Stok, J., Koolen, M.K.E., Jahr, H., Kops, N., Waarsing, J.H., Weinans, H., van der Jagt, O.P., Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects. Eur. Cells Mater. 27 (2014), 137–148.
Scotti, C., Piccinini, E., Takizawa, H., Todorov, A., Bourgine, P., Papadimitropoulos, A., Barbero, A., Manz, M.G., Martin, I., Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 3997–4002, 10.1073/pnas.1220108110.
Sheehy, E.J., Mesallati, T., Vinardell, T., Kelly, D.J., Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomater. 13 (2015), 245–253, 10.1016/j.actbio.2014.11.031.
Stüdle, C., Vallmajó-Martín, Q., Haumer, A., Guerrero, J., Centola, M., Mehrkens, A., Schaefer, D.J., Ehrbar, M., Barbero, A., Martin, I., Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 171 (2018), 219–229, 10.1016/j.biomaterials.2018.04.025.
Fritsch, K., Pigeot, S., Feng, X., Bourgine, P.E., Schroeder, T., Martin, I., Manz, M.G., Takizawa, H., Engineered humanized bone organs maintain human hematopoiesis in vivo. Exp. Hematol., 2018, 10.1016/j.exphem.2018.01.004.
Huang, R.L., Guerrero, J., Senn, A.S., Kappos, E.A., Liu, K., Li, Q., Dufrane, D., Schaefer, D.J., Martin, I., Scherberich, A., Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation. Acta Biomater. 102 (2020), 458–467, 10.1016/j.actbio.2019.11.046.
Osinga, R., Di Maggio, N., Todorov, A., Allafi, N., Barbero, A., Laurent, F., Schaefer, D.J., Martin, I., Scherberich, A., Generation of a bone organ by human adipose-derived stromal cells through endochondral ossification. Stem Cells Transl. Med. 5 (2016), 1090–1097, 10.5966/sctm.2015-0256.
Matsiko, A., Thompson, E.M., Lloyd-Griffith, C., Cunniffe, G.M., Vinardell, T., Gleeson, J.P., Kelly, D.J., O'Brien, F.J., An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J. Tissue Eng. Regen. Med. 12 (2018), e2147–e2150, 10.1002/term.2638.
Albro, M.B., Nims, R.J., Durney, K.M., Cigan, A.D., Shim, J.J., Vunjak-Novakovic, G., Hung, C.T., Ateshian, G.A., Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials 77 (2016), 173–185, 10.1016/j.biomaterials.2015.10.018.
M. Sarem, O. Otto, S. Tanaka, V.P. Shastri, Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis, (2019) 1–18.
Saidy, N.T., Wolf, F., Bas, O., Keijdener, H., Hutmacher, D.W., Mela, P., De-Juan-Pardo, E.M., Biologically inspired scaffolds for heart valve tissue engineering via melt electrowriting. Small 15 (2019), 1–15, 10.1002/smll.201900873.
Guillaume, O., Kopinski-Grünwald, O., Weisgrab, G., Baumgartner, T., Arslan, A., Whitmore, K., Van Vlierberghe, S., Ovsianikov, A., Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Acta Biomater., 2022, 10.1016/j.actbio.2022.03.010.
Silva, K.R., Rezende, R.A., Pereira, F.D.A.S., Gruber, P., Stuart, M.P., Ovsianikov, A., Brakke, K., Kasyanov, V., Jorge, V., Granjeiro, M., Baptista, L.S., Mironov, V., Silva, L., Delivery of human adipose stem cells spheroids into lockyballs. PLoS One 11 (2016), 1–14, 10.1371/journal.pone.0166073.
Sinha, R., Cámara-Torres, M., Scopece, P., Verga Falzacappa, E., Patelli, A., Moroni, L., Mota, C., A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat. Commun., 12, 2021, 10.1038/s41467-020-20865-y.
Bergsma, J.E., de Bruijn, W.C., Rozema, F.R., Bos, R.R.M., Boering, G., Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials, 16, 1995, 10.1016/0142-9612(95)91092-D.
Winet, H., Hollinger, J.O., Incorporation of polylactide–polyglycolide in a cortical defect: neoosteogenesis in a bone chamber. J. Biomed. Mater. Res., 27, 1993, 10.1002/jbm.820270514.
Bartnikowski, M., Dargaville, T.R., Ivanovski, S., Hutmacher, D.W., Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci., 96, 2019, 10.1016/j.progpolymsci.2019.05.004.
Hall, B.K., Divide, accumulate, differentiate: cell condensation In skeletal development. Int. J. Dev. Biol. 39 (1995), 881–893 http://www.ijdb.ehu.es/web/paper.php?doi=8901191.
Maes, C., Carmeliet, G., Schipani, E., Hypoxia-driven pathways in bone development, regeneration and disease. Nat. Rev. Rheumatol. 8 (2012), 358–366, 10.1038/nrrheum.2012.36.
Kronenberg, H., Developmental regulation of the growth plate. Nature 423 (2003), 332–336.
Owston, H.E., Moisley, K.M., Tronci, G., Russell, S.J., Giannoudis, P.V., Jones, E., Induced periosteum-mimicking membrane with cell barrier and multipotential stromal cell (MSC) homing functionalities. Int. J. Mol. Sci. 21 (2020), 1–16, 10.3390/ijms21155233.