DNV GL. RP-C203 - Fatigue design of offshore steel structures. Tech. Rep. DNVGL-RP-C203, DNV GL; 2016, p. 176.
Mai, Q.A., Weijtjens, W., Devriendt, C., Morato, P.G., Rigo, P., Sørensen, J.D., Prediction of remaining fatigue life of welded joints in wind turbine support structures considering strain measurement and a joint distribution of oceanographic data. Mar Struct 66 (2019), 307–322, 10.1016/j.marstruc.2019.05.002.
Long, L., Mai, Q.A., Morato, P.G., Sørensen, J.D., Thöns, S., Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures. Renew Energy 159 (2020), 1036–1046, 10.1016/j.renene.2020.06.038.
DNV GL. RP-C210 - Probabilistic methods for planning of inspection for fatigue cracks in offshore structures. Tech. Rep. DNVGL-RP-C210, DNV GL; 2019, p. 303.
Raju, I.S., Newman, J.C., Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates. Eng Fract Mech 11:4 (1979), 817–829, 10.1016/0013-7944(79)90139-5.
Newman, J.C., Raju, I.S., An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15:1–2 (1981), 185–192, 10.1016/0013-7944(81)90116-8.
Navid, H., Fenner, R., Nadiri, F., Webster, G., Stress intensity factors for internal and external cracks in pressurised thick-walled cylinders. Int J Press Vessels Pip 18:4 (1985), 241–254, 10.1016/0308-0161(85)90013-4.
Kirkhope, K., Bell, R., Kirkhope, J., Stress intensity factors for single and multiple semi-elliptical surface cracks in pressurized thick-walled cylinders. Int J Press Vessels Pip 47:2 (1991), 247–257, 10.1016/0308-0161(91)90102-8.
Raju, I.S., Newman, J.C., Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads. Fracture mechanics: Seventeenth volume Seventeenth national symposium on fracture mechanics, Albany, New York, 1984, 789–805, 10.1520/stp17428s.
Wang, X., Stress intensity factors and weight functions for deep semi-elliptical surface cracks in finite-thickness plates. Fatigue Fract Eng Mater Struct 25:3 (2002), 291–304, 10.1046/j.1460-2695.2002.00502.x.
Bocher, M., Mehmanparast, A., Braithwaite, J., Shafiee, M., New shape function solutions for fracture mechanics analysis of offshore wind turbine monopile foundations. Ocean Eng 160:January (2018), 264–275, 10.1016/j.oceaneng.2018.04.073.
Jacob, A., Mehmanparast, A., Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments. Mar Struct, 75, 2021, 102881, 10.1016/j.marstruc.2020.102881.
Kamaya, M., Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation of coalesced crack. Eng Fract Mech 75:6 (2008), 1336–1349, 10.1016/j.engfracmech.2007.07.015.
Soboyejo, W., Knott, J., Walsh, M., Cropper, K., Fatigue crack propagation of coplanar semi-elliptical cracks in pure bending. Eng Fract Mech 37:2 (1990), 323–340, 10.1016/0013-7944(90)90044-H.
Yoshimura, S., Lee, J.-S., Yagawa, G., Automated system for analyzing stress intensity factors of three-dimensional cracks: Its application to analyses of two dissimilar semi-elliptical surface cracks in plate. J Press Vessel Technol 119:1 (1997), 18–26, 10.1115/1.2842261.
Lin, X., Smith, R., A numerical simulation of fatigue growth of multiple surface initially semicircular defects under tension. Int J Press Vessels Pip 62:3 (1995), 281–289, 10.1016/0308-0161(94)00021-A.
Coules, H.E., Stress intensity interaction between dissimilar semi-elliptical surface cracks. Int J Press Vessels Pip 146 (2016), 55–64, 10.1016/j.ijpvp.2016.07.011.
Patel, S.K., Dattaguru, B., Ramachandra, K., Multiple interacting and coalescing semi-elliptical surface cracks in fatigue-part-I: Finite element analysis. Struct Longev 3:1 (2010), 37–57, 10.3970/sl.2010.003.037.
Tanaka, S., Htut, T.T., Maeda, K., Yagi, K., Osawa, N., Fracture mechanics investigation of crack coalescence in a steel tubular T-joint specimen. Eng Fail Anal, 139, 2022, 106504, 10.1016/j.engfailanal.2022.106504.
Nishioka, T., Atluri, S.N., Analysis of surface flaw in pressure vessels by a new 3-dimensional alternating method. J Press Vessel Technol 104:4 (1982), 299–307, 10.1115/1.3264221.
O'Donoghue, P.E., Nishioka, T., Atluri, S.N., Multiple surface cracks in pressure vessels. Eng Fract Mech 20:3 (1984), 545–560, 10.1016/0013-7944(84)90059-6.
Kamaya, M., Influence of the interaction on stress intensity factor of semi-elliptical surface cracks. Pressure vessels and piping conference, Volume 3: Design and analysis, 2005, 273–280, 10.1115/PVP2005-71352.
Murakami, Y., Nemat-Nasser, S., Interacting dissimilar semi-elliptical surface flaws under tension and bending. Eng Fract Mech 16:3 (1982), 373–386, 10.1016/0013-7944(82)90115-1.
Noda, N.A., Kobayashi, K., Oohashi, T., Variation of the stress intensity factor along the crack front of interacting semi-elliptical surface cracks. Arch Appl Mech 71 (2001), 43–52, 10.1007/s004190000113.
Zeng, Z.J., Dai, S.H., Yang, Y.M., Analysis of surface cracks using the line-spring boundary element method and the virtual crack extension technique. Int J Fract 60 (1993), 157–167, 10.1007/BF00012443.
Leek, T.H., Howard, I.C., An examination of methods of assessing interacting surface cracks by comparison with experimental data. Int J Press Vessels Pip 68:2 (1996), 181–201, 10.1016/0308-0161(94)00052-2.
Bayley, C., Bell, R., Experimental and numerical investigation of coplanar fatigue crack coalescence. Int J Press Vessels Pip 74:1 (1997), 33–37, 10.1016/S0308-0161(97)00068-9.
Okawa, T., Sumi, Y., Mohri, M., Simulation-based fatigue crack management of ship structural details applied to longitudinal and transverse connections. Mar Struct 19:4 (2006), 217–240, 10.1016/j.marstruc.2007.01.002.
Zhang, K., Collette, M., Experimental investigation of structural system capacity with multiple fatigue cracks. Mar Struct, 78, 2021, 102943, 10.1016/j.marstruc.2021.102943.
Fajuyigbe, A., Brennan, F., Fitness-for-purpose assessment of cracked offshore wind turbine monopile. Mar Struct, 77, 2021, 102965, 10.1016/j.marstruc.2021.102965.
Zhang, K., Collette, M., Predicting growth and interaction of multiple cracks in structural systems using Dynamic Bayesian Networks. Mar Struct, 86, 2022, 103271, 10.1016/j.marstruc.2022.103271.
Igwemezie, V., Mehmanparast, A., Kolios, A., Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Mar Struct 61 (2018), 381–397, 10.1016/j.marstruc.2018.06.008.
Morato PG, Papakonstantinou KG, Andriotis CP, Rigo P. Managing offshore wind turbines through Markov decision processes and dynamic Bayesian networks. In: Proc. of the 13th international conference on structural safety & reliability (ICOSSAR), Shanghai, China. 2022.
Giro, F., Mishael, J., Morato, P.G., Rigo, P., Inspection and maintenance planning for offshore wind support structures: Modelling reliability and inspection costs at the system level. Proc. of the ASME 2022 41st international conference on ocean, offshore and arctic engineering (OMAE), Volume 2: Structures, safety, and reliability, Hamburg, Germany, 2022, 10.1115/OMAE2022-78269.
Morato, P.G., Papakonstantinou, K.G., Andriotis, C.P., Nielsen, J.S., Rigo, P., Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes. Struct Saf, 94, 2022, 102140, 10.1016/j.strusafe.2021.102140.
Morato, P., Andriotis, C., Papakonstantinou, K., Rigo, P., Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning. Reliab. Eng. Syst. Safety, 235, 2023, 109144, 10.1016/j.ress.2023.109144.
Hlaing, N., Morato, P.G., Nielsen, J.S., Amirafshari, P., Kolios, A., Rigo, P., Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes. Struct Infrastruct Eng 18:7 (2022), 983–1001, 10.1080/15732479.2022.2037667.
Hlaing N, Morato PG, Rigo P, Amirafshari P, Kolios A, Nielsen JS. The effect of failure criteria on risk-based inspection planning of offshore wind support structures. In: Proc. of the 7th international symposium on life-cycle civil engineering (IALCCE), Shanghai, China. 2020.
Huang, Y., Wang, X., Duan, X., Evaluation of crack opening displacement of through-wall circumferential-cracked pipe using direct weight function method. Theor Appl Fract Mech, 108, 2020, 102595, 10.1016/j.tafmec.2020.102595.
British Standards. BS7910:2013+A1:2015 Guide to methods for assessing the accept-ability of flaws in metallic structures. Tech. rep., 389 Chiswick High Rd, Chiswick, London W4 4AL, United Kingdom: BSI Standards Publication; 2015, p. 490.
Dong, W., Moan, T., Gao, Z., Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab Eng Syst Saf 106 (2012), 11–27, 10.1016/j.ress.2012.06.011.
Lin X. Numerical simulation of fatigue crack growth (Ph.D. thesis), United Kingdom: University of Sheffield; 1994.
Hosseini, A., Mahmoud, M., Evaluation of stress intensity factor and fatigue growth of surface cracks in tension plates. Eng Fract Mech 22:6 (1985), 957–974, 10.1016/0013-7944(85)90036-0.
Mahmoud, M., Hosseini, A., Assessment of stress intensity factor and aspect ratio variability of surface cracks in bending plates. Eng Fract Mech 24:2 (1986), 207–221, 10.1016/0013-7944(86)90052-4.
Davenport, R.T., Brook, R., The threshold stress intensity range in fatigue. Fatigue Fract Eng Mater Struct 1:2 (1979), 151–158, 10.1111/j.1460-2695.1979.tb00374.x.
Stern, M., Becker, E.B., Dunham, R.S., A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12:3 (1976), 359–368, 10.1007/BF00032831.
Yau, J.F., Wang, S.S., Corten, H.T., A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47:2 (1980), 335–341, 10.1115/1.3153665.
Yu, H., Kuna, M., Interaction integral method for computation of crack parameters K–T – A review. Eng Fract Mech, 249, 2021, 107722, 10.1016/j.engfracmech.2021.107722.
Lewis, T., Wang, X., The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions. Eng Fract Mech 75:10 (2008), 3206–3225, 10.1016/j.engfracmech.2007.12.001.
Stenberg T. Fatigue properties of cut and welded high strength steels: Quality aspects in design and production (Ph.D. thesis), Stockholm, Sweden: KTH School of Engineering Sciences; 2016.
JCSS. JCSS probabilistic model code part 3- Resistance models. Tech. rep., Joint Committee on Structural Safety; 2011.
Jonkman J, Musial W. Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment. Tech. Rep. December, NREL; 2010, p. 1–74.
DNV GL. ST-0126 - Support structures for wind turbines. Tech. Rep. DNVGL-ST-0126, DNV GL; 2018, p. 176.
Zhang, X., Gao, H., Huang, H.-Z., Total fatigue life prediction for welded joints based on initial and equivalent crack size determination. Int J Damage Mech 27:7 (2018), 1084–1104, 10.1177/1056789517723171.
ANSYS Inc. Mechanical user's guide. 2020.
Biswal, R., Al Mamun, A., Mehmanparast, A., On the performance of monopile weldments under service loading conditions and fatigue damage prediction. Fatigue Fract Eng Mater Struct 44:February (2021), 1–15, 10.1111/ffe.13442.
Bowness, D., Lee, M., Prediction of weld toe magnification factors for semi-elliptical cracks in T–butt joints. Int J Fatigue 22:5 (2000), 369–387, 10.1016/S0142-1123(00)00012-8.