Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire de biochimie
Carretero, E.
Vo Hoang, Y.
Licznar-Fajardo, P.
Docquier, Jean-Denis ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Gavara, L.
Language :
English
Title :
Zidovudine-β-lactam pronucleoside strategy for selective delivery into Gram-negative bacteria triggered by β-lactamases
Publication date :
2023
Journal title :
ACS Infectious Diseases
eISSN :
2373-8227
Publisher :
American Chemical Society, Washington DC, United States - Washington
Fernandes, R.; Amador, P.; Prudêncio, C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev. Res. Med. Microbiol. 2013, 24, 7- 17, 10.1097/mrm.0b013e3283587727
Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928, 10.3389/fmicb.2018.02928
Silver, L. L. Challenges of Antibacterial Discovery. Clin. Microbiol. Rev. 2011, 24, 71- 109, 10.1128/cmr.00030-10
Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F. X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J. A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A. W. J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L. A.; Mussi-Pinhata, M. M.; Naidu, R. N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Ochoa, T. J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G. D.; Paredes, J. L.; Peleg, A. Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rosenthal, V. D.; Rudd, K. E.; Russell, N.; Sader, H. S.; Saengchan, W.; Schnall, J. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629- 655, 10.1016/s0140-6736(21)02724-0
Cassini, A.; Högberg, L. D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G. S.; Colomb-Cotinat, M.; Kretzschmar, M. E.; Devleesschauwer, B.; Cecchini, M.; Ouakrim, D. A.; Oliveira, T. C.; Struelens, M. J.; Suetens, C.; Monnet, D. L.; Strauss, R.; Mertens, K.; Struyf, T.; Catry, B.; Latour, K.; Ivanov, I. N.; Dobreva, E. G.; Tambic Andraševic, A.; Soprek, S.; Budimir, A.; Paphitou, N.; Žemlicková, H.; Schytte Olsen, S.; Wolff Sönksen, U.; Märtin, P.; Ivanova, M.; Lyytikäinen, O.; Jalava, J.; Coignard, B.; Eckmanns, T.; Abu Sin, M.; Haller, S.; Daikos, G. L.; Gikas, A.; Tsiodras, S.; Kontopidou, F.; Tóth, Á.; Hajdu, Á.; Guólaugsson, Ó.; Kristinsson, K. G.; Murchan, S.; Burns, K.; Pezzotti, P.; Gagliotti, C.; Dumpis, U.; Liuimiene, A.; Perrin, M.; Borg, M. A.; de Greeff, S. C.; Monen, J. C.; Koek, M. B.; Elstrøm, P.; Zabicka, D.; Deptula, A.; Hryniewicz, W.; Caniça, M.; Nogueira, P. J.; Fernandes, P. A.; Manageiro, V.; Popescu, G. A.; Serban, R. I.; Schréterová, E.; Litvová, S.; Štefkovicová, M.; Kolman, J.; Klavs, I.; Korošec, A.; Aracil, B.; Asensio, A.; Pérez-Vázquez, M.; Billström, H.; Larsson, S.; Reilly, J. S.; Johnson, A.; Hopkins, S. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56- 66, 10.1016/s1473-3099(18)30605-4
Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P. B.; Glaser, P.; Aigle, B.; Bode, H. B.; Moreira, R.; Li, Y.; Luzhetskyy, A.; Medema, M. H.; Pernodet, J.-L.; Stadler, M.; Tormo, J. R.; Genilloud, O.; Truman, A. W.; Weissman, K. J.; Takano, E.; Sabatini, S.; Stegmann, E.; Brötz-Oesterhelt, H.; Wohlleben, W.; Seemann, M.; Empting, M.; Hirsch, A. K. H.; Loretz, B.; Lehr, C.-M.; Titz, A.; Herrmann, J.; Jaeger, T.; Alt, S.; Hesterkamp, T.; Winterhalter, M.; Schiefer, A.; Pfarr, K.; Hoerauf, A.; Graz, H.; Graz, M.; Lindvall, M.; Ramurthy, S.; Karlén, A.; van Dongen, M.; Petkovic, H.; Keller, A.; Peyrane, F.; Donadio, S.; Fraisse, L.; Piddock, L. J. V.; Gilbert, I. H.; Moser, H. E.; Müller, R. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021, 5, 726- 749, 10.1038/s41570-021-00313-1
Tackling drug-resistant infections globally : final report and recommendations / the Review on Antimicrobial Resistance chaired by Jim O’Neill; Wellcome Collection. https://wellcomecollection.org/works/thvwsuba (accessed June 19, 2023).
Bassetti, M.; Garau, J. Current and Future Perspectives in the Treatment of Multidrug-Resistant Gram-Negative Infections. J. Antimicrob. Chemother. 2021, 76, 23- 37, 10.1093/jac/dkab352
Bush, K.; Bradford, P. A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, 000477, 10.1128/CMR.00047-19
Lohans, C. T.; Brem, J.; Schofield, C. J. New Delhi Metallo-β-Lactamase 1 Catalyzes Avibactam and Aztreonam Hydrolysis. Antimicrob. Agents Chemother. 2017, 61, 012244, 10.1128/aac.01224-17
Bahr, G.; González, L. J.; Vila, A. J. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem. Rev. 2021, 121, 7957- 8094, 10.1021/acs.chemrev.1c00138
Naas, T.; Oueslati, S.; Bonnin, R. A.; Dabos, M. L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B. I. Beta-Lactamase Database (BLDB) - Structure and Function. J. Enzyme Inhib. Med. Chem. 2017, 32, 917- 919, 10.1080/14756366.2017.1344235
Docquier, J.-D.; Mangani, S. An Update on β-Lactamase Inhibitor Discovery and Development. Drug Resistance Updates 2018, 36, 13- 29, 10.1016/j.drup.2017.11.002
Bush, K. Overcoming β-Lactam Resistance in Gram-Negative Pathogens. Future Med. Chem. 2016, 8, 921- 924, 10.4155/fmc-2016-0076
Laws, M.; Shaaban, A.; Rahman, K. M. Antibiotic Resistance Breakers: Current Approaches and Future Directions. FEMS Microbiol. Rev. 2019, 43, 490- 516, 10.1093/femsre/fuz014
Cole, M. S.; Hegde, P. V.; Aldrich, C. C. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect. Dis. 2022, 8, 1992- 2018, 10.1021/acsinfecdis.2c00315
Valente, E.; Gomes, J. R. B.; Moreira, R.; Iley, J. Kinetics and Mechanism of Hydrolysis of N-Acyloxymethyl Derivatives of Azetidin-2-One. J. Org. Chem. 2004, 69, 3359- 3367, 10.1021/jo0358123
Domalaon, R.; Idowu, T.; Zhanel, G. G.; Schweizer, F. Antibiotic Hybrids: The Next Generation of Agents and Adjuvants against Gram-Negative Pathogens?. Clin. Microbiol. Rev. 2018, 31, 000777, 10.1128/cmr.00077-17
Pfaller, M. A.; Barry, A. L.; Fuchs, P. C. RO 23-9424, a New Cephalosporin 3’-Quinolone: In-Vitro Antimicrobial Activity and Tentative Disc Diffusion Interpretive Criteria. J. Antimicrob. Chemother. 1993, 31, 81- 88, 10.1093/jac/31.1.81
Wang, Y.-Y.; Zhang, X.-Y.; Zhong, X.-L.; Huang, Y.-J.; Lin, J.; Chen, W.-M. Design and Synthesis of 3-Hydroxy-Pyridin-4(1H)-Ones-Ciprofloxacin Conjugates as Dual Antibacterial and Antibiofilm Agents against Pseudomonas Aeruginosa. J. Med. Chem. 2023, 66, 2169- 2193, 10.1021/acs.jmedchem.2c02044
Wang, H.; Zhou, X.-L.; Long, W.; Liu, J.-J.; Fan, F.-Y. A Fusion Protein of RGD4C and β-Lactamase Has a Favorable Targeting Effect in Its Use in Antibody Directed Enzyme Prodrug Therapy. Int. J. Mol. Sci. 2015, 16, 9625- 9634, 10.3390/ijms16059625
Christenson, J. G.; Chan, K. K.; Cleeland, R.; Dix-Holzknecht, B.; Farrish, H. H.; Patel, I. H.; Specian, A. Pharmacokinetics of Ro 23-9424, a Dual-Action Cephalosporin, in Animals. Antimicrob. Agents Chemother. 1990, 34, 1895- 1900, 10.1128/aac.34.10.1895
Evans, L. E.; Krishna, A.; Ma, Y.; Webb, T. E.; Marshall, D. C.; Tooke, C. L.; Spencer, J.; Clarke, T. B.; Armstrong, A.; Edwards, A. M. Exploitation of Antibiotic Resistance as a Novel Drug Target: Development of a β-Lactamase-Activated Antibacterial Prodrug. J. Med. Chem. 2019, 62, 4411- 4425, 10.1021/acs.jmedchem.8b01923
Haren, M. J.; Tehrani, K. H. M. E.; Kotsogianni, I.; Wade, N.; Brüchle, N. C.; Mashayekhi, V.; Martin, N. I. Cephalosporin Prodrug Inhibitors Overcome Metallo-β-Lactamase Driven Antibiotic Resistance. Chem.─Eur. J. 2021, 27, 3806- 3811, 10.1002/chem.202004694
Jackson, A. C.; Zaengle-Barone, J. M.; Puccio, E. A.; Franz, K. J. A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-Lactamase 1 without Removing Zinc. ACS Infect. Dis. 2020, 6, 1264- 1272, 10.1021/acsinfecdis.0c00083
Tehrani, K. H. M. E.; Wade, N.; Mashayekhi, V.; Brüchle, N. C.; Jespers, W.; Voskuil, K.; Pesce, D.; van Haren, M. J.; van Westen, G. J. P.; Martin, N. I. Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases. J. Med. Chem. 2021, 64, 9141- 9151, 10.1021/acs.jmedchem.1c00362
Aoki, T.; Yoshizawa, H.; Yamawaki, K.; Yokoo, K.; Sato, J.; Hisakawa, S.; Hasegawa, Y.; Kusano, H.; Sano, M.; Sugimoto, H.; Nishitani, Y.; Sato, T.; Tsuji, M.; Nakamura, R.; Nishikawa, T.; Yamano, Y. Cefiderocol (S-649266), A New Siderophore Cephalosporin Exhibiting Potent Activities against Pseudomonas Aeruginosa and Other Gram-Negative Pathogens Including Multi-Drug Resistant Bacteria: Structure Activity Relationship. Eur. J. Med. Chem. 2018, 155, 847- 868, 10.1016/j.ejmech.2018.06.014
Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V. L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912- 572922, 10.3389/fcimb.2020.572912
Patangia, D. V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of Antibiotics on the Human Microbiome and Consequences for Host Health. MicrobiologyOpen 2022, 11, e1260 10.1002/mbo3.1260
Ramsey, C.; MacGowan, A. P. A Review of the Pharmacokinetics and Pharmacodynamics of Aztreonam. J. Antimicrob. Chemother. 2016, 71, 2704- 2712, 10.1093/jac/dkw231
Decuyper, L.; Deketelaere, S.; Vanparys, L.; Jukič, M.; Sosič, I.; Sauvage, E.; Amoroso, A. M.; Verlaine, O.; Joris, B.; Gobec, S.; D’hooghe, M. In Silico Design and Enantioselective Synthesis of Functionalized Monocyclic 3-Amino-1-carboxymethyl-β-lactams as Inhibitors of Penicillin-Binding Proteins of Resistant Bacteria. Chem.─Eur. J. 2018, 24, 15254- 15266, 10.1002/chem.201801868
Decuyper, L.; Jukič, M.; Sosič, I.; Žula, A.; D’hooghe, M.; Gobec, S. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams. Med. Res. Rev. 2018, 38, 426- 503, 10.1002/med.21443
Poeylaut-Palena, A. A.; Tomatis, P. E.; Karsisiotis, A. I.; Damblon, C.; Mata, E. G.; Vila, A. J. A Minimalistic Approach to Identify Substrate Binding Features in B1 Metallo-β-Lactamases. Bioorg. Med. Chem. Lett. 2007, 17, 5171- 5174, 10.1016/j.bmcl.2007.06.089
Buynak, J. D.; Vogeti, L.; Doppalapudi, V. R.; Solomon, G. M.; Chen, H. Cephalosporin-Derived Inhibitors of β-Lactamase. Part 4: The C3 Substituent. Bioorg. Med. Chem. Lett. 2002, 12, 1663- 1666, 10.1016/s0960-894x(02)00205-6
Shah, S. K.; Dorn, C. P., Jr.; Finke, P. E.; Hale, J. J.; Hagmann, W. K.; Brause, K. A.; Chandler, G. O.; Kissinger, A. L.; Ashe, B. M. Orally active .beta.-lactam inhibitors of human leukocyte elastase-1. Activity of 3,3-diethyl-2-azetidinones. J. Med. Chem. 1992, 35, 3745- 3754, 10.1021/jm00099a003
Zhan, P.; Yu, B.; Ouyang, L. Drug Repurposing: An Effective Strategy to Accelerate Contemporary Drug Discovery. Drug Discovery Today 2022, 27, 1785- 1788, 10.1016/j.drudis.2022.05.026
Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug Repurposing for Next-Generation Combination Therapies against Multidrug-Resistant Bacteria. Theranostics 2021, 11, 4910- 4928, 10.7150/thno.56205
Thomson, J. M.; Lamont, I. L. Nucleoside Analogues as Antibacterial Agents. Front. Microbiol. 2019, 10, 952- 963, 10.3389/fmicb.2019.00952
Elwell, L. P.; Ferone, R.; Freeman, G. A.; Fyfe, J. A.; Hill, J. A.; Ray, P. H.; Richards, C. A.; Singer, S. C.; Knick, V. B.; Rideout, J. L. Antibacterial Activity and Mechanism of Action of 3’-Azido-3’-Deoxythymidine (BW A509U). Antimicrob. Agents Chemother. 1987, 31, 274- 280, 10.1128/aac.31.2.274
Hu, Y.; Coates, A. Zidovudine Enhances Activity of Carbapenems against NDM-1-Producing Enterobacteriaceae. J. Antimicrob. Chemother. 2021, 76, 2302- 2305, 10.1093/jac/dkab184
Alcaide, B.; Almendros, P.; Luna, A. The Chemistry of 2-Azetidinones (β-Lactams). In Modern Heterocyclic Chemistry; John Wiley & Sons, Ltd, 2011; pp 2117- 2173.
Miller, M. J. Hydroxamate approach to the synthesis of .beta.-lactam antibiotics. Acc. Chem. Res. 1986, 19, 49- 56, 10.1021/ar00122a004
Sliwa, A.; Dive, G.; Marchand-Brynaert, J. 12- to 22-Membered Bridged β-Lactams as Potential Penicillin-Binding Protein Inhibitors. Chem.-Asian J. 2012, 7, 425- 434, 10.1002/asia.201100732
Sliwa, A.; Dive, G.; Habib Jiwan, J.-L.; Marchand-Brynaert, J. Cyclodimerization by Ring-Closing Metathesis: Synthesis, Computational, and Biological Evaluation of Novel Bis-Azetidinyl-Macrocycles. Tetrahedron 2010, 66, 9519- 9527, 10.1016/j.tet.2010.10.015
Miller, M. J.; Mattingly, P. G.; Morrison, M. A.; Kerwin, J. F., Jr. Synthesis of .beta.-lactams from substituted hydroxamic acids. J. Am. Chem. Soc. 1980, 102, 7026- 7032, 10.1021/ja00543a021
Floyd, D. M.; Fritz, A. W.; Pluscec, J.; Weaver, E. R.; Cimarusti, C. M. Monobactams. Preparation of (S)-3-amino-2-oxoazetidine-1-sulfonic acids from L-.alpha.-amino-.beta.-hydroxy acids via their hydroxamic esters. J. Org. Chem. 1982, 47, 5160- 5167, 10.1021/jo00147a024
Kiyota, H.; Takai, T.; Shimasaki, Y.; Saitoh, M.; Nakayama, O.; Takada, T.; Kuwahara, S. Synthesis of (-)-Tabtoxinine-β-Lactam, the Phytotoxin of Tobacco Wildfire Disease. Synthesis 2007, 2471- 2480, 10.1055/s-2007-983785
Mattingly, P. G.; Miller, M. J. Titanium Trichloride Reduction of Substituted N-Hydroxy-2-Azetidinones and Other Hydroxamic Acids. J. Org. Chem. 1980, 45, 410- 415, 10.1021/jo01291a007
Keck, G. E.; McHardy, S. F.; Wager, T. T. Reductive Cleavage of N-O Bonds in Hydroxylamine and Hydroxamic Acid Derivatives Using SmI2/THF. Tetrahedron Lett. 1995, 36, 7419- 7422, 10.1016/0040-4039(95)01557-4
Ogilvie, W. W.; Durst, T. Oxidation of 3-Alkylidene-β-Lactams. A Preparation of 3-Alkenyl-3-Hydroxy-β-Lactams. Can. J. Chem. 1988, 66, 304- 309, 10.1139/v88-053
Aoyama, Y.; Uenaka, M.; Kii, M.; Tanaka, M.; Konoike, T.; Hayasaki-Kajiwara, Y.; Naya, N.; Nakajima, M. Design, Synthesis and Pharmacological Evaluation of 3-Benzylazetidine-2-One-Based Human Chymase Inhibitors. Bioorg. Med. Chem. 2001, 9, 3065- 3075, 10.1016/s0968-0896(01)00209-7
Urbach, A.; Muccioli, G. G.; Stern, E.; Lambert, D. M.; Marchand-Brynaert, J. 3-Alkenyl-2-Azetidinones as Fatty Acid Amide Hydrolase Inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4163- 4167, 10.1016/j.bmcl.2008.05.081
Buetti-Weekly, M. T.; Clifford, P.; Jones, B. P.; Nelson, J. D. Development of a Safe and Scalable Process for the Preparation of Allyl Glyoxalate. Org. Process Res. Dev. 2018, 22, 82- 90, 10.1021/acs.oprd.7b00345
Wu, P.; Nielsen, T. E. Scaffold Diversity from N-Acyliminium Ions. Chem. Rev. 2017, 117, 7811- 7856, 10.1021/acs.chemrev.6b00806
Waley, S. G. A spectrophotometric assay of β-lactamase action on penicillins. Biochem. J. 1974, 139, 789- 790, 10.1042/bj1390789
Bebrone, C. Metallo-β-Lactamases (Classification, Activity, Genetic Organization, Structure, Zinc Coordination) and Their Superfamily. Biochem. Pharmacol. 2007, 74, 1686- 1701, 10.1016/j.bcp.2007.05.021
D’Amico, S.; Sohier, J. S.; Feller, G. Kinetics and Energetics of Ligand Binding Determined by Microcalorimetry: Insights into Active Site Mobility in a Psychrophilic α-Amylase. J. Mol. Biol. 2006, 358, 1296- 1304, 10.1016/j.jmb.2006.03.004
Wang, W.-J.; Wang, Q.; Zhang, Y.; Lu, R.; Zhang, Y.-L.; Yang, K.-W.; Lei, J.-E.; He, Y. Characterization of β-Lactamase Activity Using Isothermal Titration Calorimetry. Biochim. Biophys. Acta, Gen. Subj. 2017, 1861, 2031- 2038, 10.1016/j.bbagen.2017.04.011
Wang, D.; Chen, J.; Yang, L.; Mou, Y.; Yang, Y. Phenotypic and Enzymatic Comparative Analysis of the KPC Variants, KPC-2 and Its Recently Discovered Variant KPC-15. PLoS One 2014, 9, e111491 10.1371/journal.pone.0111491
Ali, A.; Kumar, R.; Iquebal, M. A.; Jaiswal, S.; Kumar, D.; Khan, A. U. The Role of Conserved Residues in the Catalytic Activity of NDM-1: An Approach Involving Site Directed Mutagenesis and Molecular Dynamics. Phys. Chem. Chem. Phys. 2019, 21, 17821- 17835, 10.1039/c9cp02734c
Jacoby, G. A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161- 182, 10.1128/cmr.00036-08
Shimamura, T.; Ibuka, A.; Fushinobu, S.; Wakagi, T.; Ishiguro, M.; Ishii, Y.; Matsuzawa, H. Acyl-Intermediate Structures of the Extended-Spectrum Class A β-Lactamase, Toho-1, in Complex with Cefotaxime, Cephalothin, and Benzylpenicillin. J. Biol. Chem. 2002, 277, 46601- 46608, 10.1074/jbc.m207884200
Alsenani, T. A.; Viviani, S. L.; Kumar, V.; Taracila, M. A.; Bethel, C. R.; Barnes, M. D.; Papp-Wallace, K. M.; Shields, R. K.; Nguyen, M. H.; Clancy, C. J.; Bonomo, R. A.; van den Akker, F. Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2022, 66, e02414 10.1128/aac.02414-21
Jacob, F.; Joris, B.; Dideberg, O.; Dusart, J.; Ghuysen, J.-M.; Frére, J.-M. Engineering a Novel β-Iactamase by a Single Point Mutation. Protein Eng., Des. Sel. 1990, 4, 79- 86, 10.1093/protein/4.1.79
Caselli, E.; Powers, R. A.; Blasczcak, L. C.; Wu, C. Y. E.; Prati, F.; Shoichet, B. K. Energetic, Structural, and Antimicrobial Analyses of β-Lactam Side Chain Recognition by β-Lactamases. Chem. Biol. 2001, 8, 17- 31, 10.1016/s1074-5521(00)00052-1