AlZahal, O., AlZahal, H., Steele, M.A., Van Schaik, M., Kyriazakis, I., Duffield, T.F., McBride, B.W., The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J. Dairy Sci. 94 (2011), 3568–3574 https://doi.org/10.3168/jds.2010-3944 21700044.
AlZahal, O., Kebreab, E., France, J., Froetschel, M., McBride, B.W., Ruminal temperature may aid in the detection of subacute ruminal acidosis. J. Dairy Sci. 91 (2008), 202–207 https://doi.org/10.3168/jds.2007-0535 18096941.
Baird, G.D., Primary ketosis in the high-producing dairy cow: Clinical and subclinical disorders, treatment, prevention, and outlook. J. Dairy Sci. 65 (1982), 1–10 https://doi.org/10.3168/jds.S0022-0302(82)82146-2 7042782.
Baker, H.M., Baker, E.N., Lactoferrin and iron: Structural and dynamic aspects of binding and release. Biometals 17 (2004), 209–216 https://doi.org/10.1023/B:BIOM.0000027694.40260.70 15222467.
Bates, D., Mächler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (2015), 1–48 https://doi.org/10.18637/jss.v067.i01.
Beauchemin, K.A., Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 101 (2018), 4762–4784 https://doi.org/10.3168/jds.2017-13706 29627250.
Berning, L.M., Shook, G.E., Prediction of mastitis using milk somatic cell count, N-acetyl-β-D-glucosaminidase, and lactose. J. Dairy Sci. 75 (1992), 1840–1848 https://doi.org/10.3168/jds.S0022-0302(92)77943-0 1500580.
Cheng, J.B., Wang, J.Q., Bu, D.P., Liu, G.L., Zhang, C.G., Wei, H.Y., Zhou, L.Y., Wang, J.Z., Factors affecting the lactoferrin concentration in bovine milk. J. Dairy Sci. 91 (2008), 970–976 https://doi.org/10.3168/jds.2007-0689 18292252.
Coon, R.E., Duffield, T.F., DeVries, T.J., Short communication: Risk of subacute ruminal acidosis affects the feed sorting behavior and milk production of early lactation cows. J. Dairy Sci. 102 (2019), 652–659 https://doi.org/10.3168/jds.2018-15064 30447980.
Davies, A.M.C., Fearn, T., Back to basics: Calibration statistics. Spectrosc. Eur. 18 (2006), 31–32.
de Jong, S., SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18 (1993), 251–263 https://doi.org/10.1016/0169-7439(93)85002-X.
De Koster, J., Salavati, M., Grelet, C., Crowe, M.A., Matthews, E., O'Flaherty, R., Opsomer, G., Foldager, L., Hostens, M., Prediction of metabolic clusters in early-lactation dairy cows using models based on milk biomarkers. J. Dairy Sci. 102 (2019), 2631–2644 https://doi.org/10.3168/jds.2018-15533 30692010.
Denwood, M.J., Kleen, J.L., Jensen, D.B., Jonsson, N.N., Describing temporal variation in reticuloruminal pH using continuous monitoring data. J. Dairy Sci. 101 (2018), 233–245 https://doi.org/10.3168/jds.2017-12828 29055552.
DWD Climate Data Center (CDC), Historical hourly station observations of 2 m air temperature and humidity for Germany, version V006. https://opendata.dwd.de/test/CDC/observations_germany/climate/hourly/air_temperature/historical/DESCRIPTION_obsgermany_climate_hourly_tu_historical_en.pdf, 2018. (Accessed 25 October 2019)
Enemark, J.M.D., The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 176 (2008), 32–43 https://doi.org/10.1016/j.tvjl.2007.12.021 18343172.
Enemark, J.M.D., Jørgensen, R.J., Kristensen, N.B., An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds. Vet. Res. Commun. 28 (2004), 687–709 https://doi.org/10.1023/B:VERC.0000045949.31499.20 15609869.
Enemark, J.M.D., Jørgensen, R.J., St. Enemark, P., Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: A review. Vet. IR Zootech. 20 (2002), 16–29.
Falk, M., Münger, A., Dohme-Meier, F., Technical note: A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation. J. Dairy Sci. 99 (2016), 1951–1955 https://doi.org/10.3168/jds.2015-9725 26723129.
Fievez, V., Colman, E., Castro-Montoya, J.M., Stefanov, I., Vlaeminck, B., Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 172 (2012), 51–65 https://doi.org/10.1016/j.anifeedsci.2011.12.008.
Fleischer, P., Metzner, M., Beyerbach, M., Hoedemaker, M., Klee, W., The relationship between milk yield and the incidence of some diseases in dairy cows. J. Dairy Sci. 84 (2001), 2025–2035 https://doi.org/10.3168/jds.S0022-0302(01)74646-2 11573782.
Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., Vanrobays, M.-L., Lainé, A., Vanderick, S., Grelet, C., Vanlierde, A., Froidmont, E., Dardenne, P., Capitalizing on fine milk composition for breeding and management of dairy cows. J. Dairy Sci. 99 (2016), 4071–4079 https://doi.org/10.3168/jds.2015-10140 26778306.
Grelet, C., Bastin, C., Gelé, M., Davière, J.-B. B., Johan, M., Werner, A., Reding, R., Fernandez Pierna, J.A.A., Colinet, F.G.G., Dardenne, P., Gengler, N., Soyeurt, H., Dehareng, F., Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 99 (2016), 4816–4825 https://doi.org/10.3168/jds.2015-10477 27016835.
Grelet, C., Fernández Pierna, J.A., Dardenne, P., Baeten, V., Dehareng, F., Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy Sci. 98 (2015), 2150–2160 https://doi.org/10.3168/jds.2014-8764 25682131.
Grelet, C., Vanlierde, A., Hostens, M., Foldager, L., Salavati, M., Ingvartsen, K.L., Crowe, M., Sorensen, M.T., Froidmont, E., Ferris, C.P., Marchitelli, C., Becker, F., Larsen, T., Carter, F., Dehareng, F., Potential of milk mid-IR spectra to predict metabolic status of cows through blood components and an innovative clustering approach. Animal 13 (2019), 649–658 https://doi.org/10.1017/S1751731118001751 29987991.
Gross, J., Van Dorland, H.A., Bruckmaier, R.M., Schwarz, F.J., Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 78 (2011), 479–488 https://doi.org/10.1017/S0022029911000550 21843394.
Humer, E., Ghareeb, K., Harder, H., Mickdam, E., Khol-Parisini, A., Zebeli, Q., Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. J. Dairy Sci. 98 (2015), 8788–8799 https://doi.org/10.3168/jds.2015-9893 26433416.
Husson, A.F., Josse, J., Husson, M.F., missMDA: Handling missing values with multivariate data analysis, version 1.14: 1–39. https://husson.github.io/, 2019.
ICAR, Section 2—Guidelines for Dairy Cattle Milk Recording. https://www.icar.org/Guidelines/02-Overview-Cattle-Milk-Recording.pdf, 2017. (Accessed 14 March 2020)
Jiang, F.G., Lin, X.Y., Yan, Z.G., Hu, Z.Y., Liu, G.M., Sun, Y.D., Liu, X.W., Wang, Z.H., Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. J. Dairy Sci. 100 (2017), 2660–2671 https://doi.org/10.3168/jds.2016-11559 28215894.
Jing, L., Dewanckele, L., Vlaeminck, B., Van Straalen, W.M., Koopmans, A., Fievez, V., Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators. J. Dairy Sci. 101 (2018), 9827–9840 https://doi.org/10.3168/jds.2018-14903 30172392.
Josse, J., Husson, F., missMDA: A package for handling missing values in multivariate data analysis. J. Stat. Softw., 70, 2016 https://doi.org/10.18637/jss.v070.i01.
Khafipour, E., Krause, D.O., Plaizier, J.C., Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation. J. Dairy Sci. 92 (2009), 1712–1724 https://doi.org/10.3168/jds.2008-1656 19307653.
Khafipour, E., Krause, D.O., Plaizier, J.C., A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 92 (2009), 1060–1070 https://doi.org/10.3168/jds.2008-1389 19233799.
Kleen, J.L., Hooijer, G.A., Rehage, J., Noordhuizen, J.P.T.M., Subacute ruminal acidosis (SARA): A review. J. Vet. Med. A Physiol. Pathol. Clin. Med. 50 (2003), 406–414 https://doi.org/10.1046/j.1439-0442.2003.00569.x 14633219.
Kleen, J.L., Upgang, L., Rehage, J., Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet. Scand., 55, 2013, 48 https://doi.org/10.1186/1751-0147-55-48 23805878.
Kleiber, M., Black, A.L., Brown, M.A., Baxter, C.F., Luick, J.R., Stadtman, F.H., Glucose as precursor of milk constituents in the intact dairy cow. Biochim. Biophys. Acta 17 (1955), 252–260 https://doi.org/10.1016/0006-3002(55)90357-7 13239666.
Kvidera, S.K., Horst, E.A., Abuajamieh, M., Mayorga, E.J., Fernandez, M.V.S., Baumgard, L.H., Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 100 (2017), 2360–2374 https://doi.org/10.3168/jds.2016-12001 28041733.
Lechartier, C., Peyraud, J.-L., The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. J. Dairy Sci. 94 (2011), 2440–2454 https://doi.org/10.3168/jds.2010-3285 21524536.
Li, S., Gozho, G.N., Gakhar, N., Khafipour, E., Krause, D.O., Plaizier, J.C., Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can. J. Anim. Sci. 92 (2012), 353–364 https://doi.org/10.4141/cjas2012-004.
Liang, D., Wood, C.L., McQuerry, K.J., Ray, D.L., Clark, J.D., Bewley, J.M., Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J. Dairy Sci. 96 (2013), 5072–5081 https://doi.org/10.3168/jds.2012-6537 23769360.
Lindena, T., Tergast, H., Ellßel, R., Hansen, H., Steckbriefe zur Tierhaltung in Deutschland: Milchkühe [Fact sheets on animal husbandry in Germany: Dairy cows]. https://www.milchtrends.de/fileadmin/milchtrends/Literatur_Milchproduktion/Steckbrief_Milchkuehe2019.pdf, 2018. (Accessed 30 September 2020)
Loor, J.J., Everts, R.E., Bionaz, M., Dann, H.M., Morin, D.E., Oliveira, R., Rodriguez-Zas, S.L., Drackley, J.K., Lewin, H.A., Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol. Genomics 32 (2007), 105–116 https://doi.org/10.1152/physiolgenomics.00188.2007 17925483.
McParland, S., Lewis, E., Kennedy, E., Moore, S.G., McCarthy, B., O'Donovan, M., Butler, S.T., Pryce, J.E., Berry, D.P., Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. J. Dairy Sci. 97 (2014), 5863–5871 https://doi.org/10.3168/jds.2014-8214 24997658.
Mensching, A., Bünemann, K., Meyer, U., von Soosten, D., Hummel, J., Schmitt, A.O., Sharifi, A.R., Dänicke, S., Modeling of reticular and ventral ruminal pH of lactating dairy cows using ingestion and rumination behavior. J. Dairy Sci. 103 (2020), 7260–7275 https://doi.org/10.3168/jds.2020-18195 32534915.
Mensching, A., Hummel, J., Sharifi, A.R., Statistical modeling of ruminal pH parameters from dairy cows based on a meta-analysis. J. Dairy Sci. 103 (2020), 750–767 https://doi.org/10.3168/jds.2019-16802 31704012.
Mensching, A., Zschiesche, M., Hummel, J., Schmitt, A.O., Grelet, C., Sharifi, A.R., An innovative concept for a multivariate plausibility assessment of synchronously recorded data. Animals (Basel), 10, 2020, 1412 https://doi.org/10.3390/ani10081412 32823697.
Mevik, B.-H., Wehrens, R., The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 18 (2007), 1–23 https://doi.org/10.18637/jss.v018.i02.
Miettinen, H., Huhtanen, P., Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. J. Dairy Sci. 79 (1996), 851–861 https://doi.org/10.3168/jds.S0022-0302(96)76434-2 8792285.
Nakazawa, M., fmsb: Functions for medical statistics book with some demographic data, version 0.7.0: 1–61. http://minato.sip21c.org/msb/, 2019.
Nocek, J.E., Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80 (1997), 1005–1028 https://doi.org/10.3168/jds.S0022-0302(97)76026-0 9178142.
Oba, M., Allen, M.S., Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 2. Chewing activities. J. Dairy Sci. 83 (2000), 1342–1349 https://doi.org/10.3168/jds.S0022-0302(00)75001-6 10877400.
Oetzel, G.R., Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am. Food Anim. Pract. 20 (2004), 651–674 https://doi.org/10.1016/j.cvfa.2004.06.006 15471629.
Palmquist, D.L., Milk fat: Origin of fatty acids and influence of nutritional factors thereon. Fox, P.F., McSweeney, P.L.H., (eds.) Advanced Dairy Chemistry: Lipids, 3rd ed., 2006, Springer Science+Business Media, New York, NY.
R Core Team, R: A language and environment for statistical computing, Version 3.6.2. 2019, R Foundation for Statistical Computing, Vienna, Austria.
Soyeurt, H., Bastin, C., Colinet, F.G., Arnould, V.M.-R., Berry, D.P., Wall, E., Dehareng, F., Nguyen, H.N., Dardenne, P., Schefers, J., Vandenplas, J., Weigel, K., Coffey, M., Théron, L., Detilleux, J., Reding, E., Gengler, N., McParland, S., Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis. Animal 6 (2012), 1830–1838 https://doi.org/10.1017/S1751731112000791 22717388.
Soyeurt, H., Colinet, F.G., Arnould, V.M.-R., Dardenne, P., Bertozzi, C., Renaville, R., Portetelle, D., Gengler, N., Genetic variability of lactoferrin content estimated by mid-infrared spectrometry in bovine milk. J. Dairy Sci. 90 (2007), 4443–4450 https://doi.org/10.3168/jds.2006-827 17699065.
Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., Berry, D.P., Coffey, M., Dardenne, P., Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 94 (2011), 1657–1667 https://doi.org/10.3168/jds.2010-3408 21426953.
Stangaferro, M.L., Wijma, R., Caixeta, L.S., Al-Abri, M.A., Giordano, J.O., Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J. Dairy Sci. 99 (2016), 7395–7410 https://doi.org/10.3168/jds.2016-10907 27372591.
Van Hertem, T., Maltz, E., Antler, A., Romanini, C.E.B., Viazzi, S., Bahr, C., Schlageter-Tello, A., Lokhorst, C., Berckmans, D., Halachmi, I., Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity. J. Dairy Sci. 96 (2013), 4286–4298 https://doi.org/10.3168/jds.2012-6188 23684042.
Van Nespen, T., Vlaeminck, B., Wanzele, W., Van Straalen, W., Fievez, V., Use of specific milk fatty acids as diagnostic tool for rumen acidosis in dairy cows. Commun. Agric. Appl. Biol. Sci. 70 (2005), 277–280 16366325.
Vanlierde, A., Soyeurt, H., Gengler, N., Colinet, F.G., Froidmont, E., Kreuzer, M., Grandl, F., Bell, M., Lund, P., Olijhoek, D.W., Eugène, M., Martin, C., Kuhla, B., Dehareng, F., Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. J. Dairy Sci. 101 (2018), 7618–7624 https://doi.org/10.3168/jds.2018-14472 29753478.
Vanlierde, A., Vanrobays, M.L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., Lewis, E., Deighton, M.H., Grandl, F., Kreuzer, M., Gredler, B., Dardenne, P., Gengler, N., Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 98 (2015), 5740–5747 https://doi.org/10.3168/jds.2014-8436.
VDLUFA, Handbook for Methodology of Agricultural Experiments and Investigations (Book of Methods), Volume III: The Chemical Analysis of Feedstuffs. 1993, Association of German Agricultural Analytic and Research Institutes (VDLUFA), Speyer, Germany.
Villot, C., Meunier, B., Bodin, J., Martin, C., Silberberg, M., Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows. Animal 12 (2018), 481–490 https://doi.org/10.1017/S1751731117001677 28747243.
Vlaeminck, B., Fievez, V., Tamminga, R.J., Dewhurst, R.J., van Vuuren, A., De Brabander, D., Demeyer, D., Milk odd- and branched-chain fatty acids in relation to the rumen fermentation pattern. J. Dairy Sci. 89 (2006), 3954–3964 https://doi.org/10.3168/jds.S0022-0302(06)72437-7 16960070.
Wallén, S.E., Prestløkken, E., Meuwissen, T.H.E., McParland, S., Berry, D.P., Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows. J. Dairy Sci. 101 (2018), 6232–6243 https://doi.org/10.3168/jds.2017-13874 29605317.
Wiggans, G.R., Shook, G.E., A lactation measure of somatic cell count. J. Dairy Sci. 70 (1987), 2666–2672 https://doi.org/10.3168/jds.S0022-0302(87)80337-5 3448115.
Williams, P.C., Sobering, D.C., Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1 (1993), 25–32 https://doi.org/10.1255/jnirs.3.