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ABSTRACT

A routine monitoring for subacute ruminal acido-
sis (SARA) on the individual level could support the 
minimization of economic losses and the ensuring of 
animal welfare in dairy cows. The objectives of this 
study were (1) to develop a SARA risk score (SRS) 
by combining information from different data acquisi-
tion systems to generate an integrative indicator trait, 
(2) the investigation of associations of the SRS with 
feed analysis data, blood characteristics, performance 
data, and milk composition, including the fatty acid 
(FA) profile, (3) the development of a milk mid-infrared 
(MIR) spectra-based prediction equation for this novel 
reference trait SRS, and (4) its application to an exter-
nal data set consisting of MIR data of test day records 
to investigate the association between the MIR-based 
predictions of the SRS and the milk FA profile. The 
primary data set, which was used for the objectives (1) 
to (3), consisted of data collected from 10 commercial 
farms with a total of 100 Holstein cows in early lacta-
tion. The data comprised barn climate parameters, pH 
and temperature logging from intrareticular measure-
ment boluses, as well as jaw movement and locomotion 
behavior recordings of noseband-sensor halters and 
pedometers. Further sampling and data collection in-
cluded feed samples, blood samples, milk performance, 
and milk samples, whereof the latter were used to get 
the milk MIR spectra and to estimate the main milk 
components, the milk FA profile, and the lactoferrin 
content. Because all measurements were characterized 
by different temporal resolutions, the data preparation 
consisted of an aggregation into values on a daily basis 
and merging it into one data set. For the development 
of the SRS, a total of 7 traits were selected, which were 
derived from measurements of pH and temperature in 

the reticulum, chewing behavior, and milk yield. After 
adjustment for fixed effects and standardization, these 
7 traits were combined into the SRS using a linear 
combination and directional weights based on current 
knowledge derived from literature studies. The second-
ary data set was used for objective (4) and consisted 
of test day records of the entire herds, including per-
formance data, milk MIR spectra and MIR-predicted 
FA. At farm level, it could be shown that diets with 
higher proportions of concentrated feed resulted in 
both lower daily mean pH and higher SRS values. On 
the individual level, an increased SRS could be associ-
ated with a modified FA profile (e.g., lower levels of 
short- and medium-chain FA, higher levels of C17:0, 
odd- and branched-chain FA). Furthermore, a milk 
MIR-based partial least squares regression model with 
a moderate predictability was established for the SRS. 
This work provides the basis for the development of 
routine SARA monitoring and demonstrates the high 
potential of milk composition-based assessment of the 
health status of lactating cows.
Key words: SARA, milk mid-infrared spectra, partial 
least squares regression, indicator trait

INTRODUCTION

Technological progress has facilitated collection, man-
agement, and use of “big data,” providing support for 
the development of innovative and complex functional 
traits, opening new possibilities in animal research and 
commercial farming. Particularly an improved moni-
toring for early detection of subclinical disorders such 
as SARA could facilitate timely interventions and thus 
prevent clinical diseases in dairy farming. In this re-
gard, sensor-based data acquisition provides the basis 
for monitoring systems that can be superior to detec-
tion by human sensory perception. Because signs of a 
disease are generally reflected in several measurable 
traits, the combination of different data acquisition 
systems, in particular, can offer the basis for innova-
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tive concepts. For sensor-based lameness detection, 
for example, Van Hertem et al. (2013) used the neck 
and rumination activity recorded with a heat detection 
system and combined it with information on the milk 
performance and achieved a cross-validated sensitivity 
of 0.89 and specificity of 0.85. However, the situation 
is different with regard to SARA, as, by definition of 
the subacute condition, no clear clinical signs on the 
individual level are present, which makes diagnosis very 
difficult (Enemark, 2008). In this respect, the integra-
tive combination of different information sources from 
several sensor systems could therefore be useful and 
theoretically should provide a better basis for the as-
sessment of the health status.

Dairy herds receiving diets high in concentrate and 
low in physically effective fiber tend to show various 
clinical signs of related diseases (Kleen et al., 2003). 
These include reduced feed intake, lower milk pro-
duction efficiency, altered fecal consistency, increased 
frequency of claw diseases, and an overall higher 
culling rate. Some of these signs are per construction 
herd-based parameters, and their reliability is based 
essentially on statistical aggregation of data from the 
entire herd. However, a routine monitoring system at 
individual level would be preferable, as this would both 
improve management and contribute to ensuring animal 
welfare, and, in addition, the obtained data would be 
of great value for animal breeding. Current approaches 
already rely on sensor-based continuous intrareticular 
pH measurements (e.g., Denwood et al., 2018). Besides 
SARA, Stangaferro et al. (2016), for example, showed 
that rumination behavior provides a high potential for 
individual animal monitoring for ketosis and displaced 
abomasum.

However, for the monitoring of SARA, one major 
challenge is that a high individual animal variance 
concerning susceptibility to SARA has been observed 
(Humer et al., 2015). Consequently, a need exists to 
identify innovative indicators such as biomarkers, which 
provide the highest possible degree of association with 
SARA on the individual level and which are at best 
applicable on a large scale in commercial farming.

In the last decade, several studies demonstrated that 
milk mid-infrared (MIR) analysis, which is routinely 
used to determine standard milk components relevant 
for milk payment (e.g., fat content), can provide fur-
ther relevant information for both breeding and man-
agement purposes (Gengler et al., 2016). Using MIR 
spectroscopy, it is possible to differentiate the milk 
components even further, such as breaking down the fat 
fraction into its fatty acid (FA) composition (Soyeurt 
et al., 2011). Recent approaches include the MIR-based 
prediction of more complex traits of animal associ-
ated characteristics such as the energetic or metabolic 

status (De Koster et al., 2019) or methane emission 
(Vanlierde et al., 2018). Because the milk FA profile 
is associated with ruminal fermentation (Vlaeminck 
et al., 2006; Jing et al., 2018) and energy metabolism 
(Gross et al., 2011), it can be suggested that MIR-
based models have a high potential for predicting and 
optimizing the monitoring of functional traits, which is 
relevant in terms of animal welfare and economy. Once 
an adequate MIR-based prediction model for health-
related traits is developed, the main advantage will be 
that it can be applied to test day data collected during 
the routine recording and subsequently could be used 
in commercial farming. A drawback when working with 
MIR spectroscopy is that intra- and interinstrument 
variability occurs, and that predictions are unstable 
over time (Gengler et al., 2016). During routine appli-
cation, post-prediction corrections are therefore carried 
out for the standard milk components (fat, protein) 
using standardized reference samples. However, this is 
not possible for all other traits that are not covered by 
the standardized reference samples for post-prediction 
correction. To solve this problem, Grelet et al. (2015) 
developed a method to standardize the spectra across 
different devices and manufacturers, while at the same 
time eliminating the temporal instability.

Based on data collected under field conditions, the 
objectives of this study were (1) to develop an integra-
tive indicator trait for detecting SARA by combining 
information from different data collection systems into 
one SARA risk score (SRS). To evaluate this novel 
trait, its association with feed composition, blood me-
tabolites, performance data, and fine milk composition 
was examined (2). Furthermore, a milk MIR spectra-
based prediction equation of this novel reference trait 
SRS was developed (3) and applied to an external data 
set consisting of test day records to study the associa-
tion between MIR-predicted SRS and the FA profile of 
the milk (4).

MATERIALS AND METHODS

The experiment was conducted in accordance with 
the German legislation on animal protection (Animal 
Welfare Act) and was approved by the Lower Saxony 
State Office for Consumer Protection and Food Safety 
(LAVES, Oldenburg, Germany; AZ: 33.9-42502-05-
17A106).

Data Recording

The data of this study consisted of a primary and a 
secondary data set. The primary data set was used for 
the development of the SRS and the milk MIR-based 
partial least squares (PLS) regression model. The sec-

Mensching et al.: PREDICTION OF SARA RISK USING MILK MID-INFRARED SPECTRA



Journal of Dairy Science Vol. 104 No. 4, 2021

4617

ondary data set served to investigate the associations 
between milk MIR-predicted SRS and the milk compo-
sition under field conditions.

Primary Data Set

Following a standardized sampling scheme (see Fig-
ure 1), data recording was carried out sequentially in 10 
commercial farms on a total of 100 Holstein cows in the 
northwest of Lower Saxony, Germany, between April 
2017 and March 2018. Compared with an average 305-d 
milk yield of 8,500 kg and 63 cows per farm in Germany 
in 2016 (Lindena et al., 2018), the 10 farms can be 
classified as above average in terms of performance and 
size, with 305-d milk yields between 9,200 and 11,100 
kg and herd sizes of approx. 200 to 600 cows. All farms 
had a loose-housing outdoor climate barn with resting 
pens, fed a partial mixed ration (PMR) or TMR, and 
milked the cows twice a day. Per farm, 10 cows were se-
lected so that the theoretical calving date was as close 
as possible and at most 2 wk before the actual data 
collection period. Additionally, we attempted to ensure 
that all parities of the early-lactation cows (1, 2, 3, 
and ≥4) were covered equally. On each farm, the 2-wk 
data collection during early lactation (15 ± 6 DIM on 
d 8 in each farm; see Figure 1) was preceded by a 1-wk 
preparation and adaptation phase, allowing the cows to 
get used to the measuring equipment.

In each farm, feed samples were collected during the 
data collection period on d 8, 10, 15, and 17 (see Figure 
1). Samples of equal size were taken immediately after 
the distribution of PMR or TMR at 3 different posi-
tions in the trough (beginning, middle, end) and then 
were pooled and mixed. At first, measurements with a 
Penn State Particle Separator (Nasco, Fort Atkinson, 

WI) were performed on subsamples of the pooled and 
mixed feed samples to determine the physically effec-
tive NDF > 8 mm (peNDF > 8) of the PMR and 
TMR, defined as the proportion of material retained 
on an 8-mm sieve multiplied by the NDF content of 
the diet. The corresponding procedure was performed 
by the same person throughout the experiment. Then, 
additional subsamples of the pooled and mixed feed 
samples were vacuum-packed and stored at −20°C until 
further analysis. Concentrated feed samples were also 
taken at the farms where PMR was fed. The analyses 
were carried out according to the methods of the Asso-
ciation of German Agricultural Analytic and Research 
Institute (VDLUFA, 1993), and the fiber analysis was 
performed using the filter bag system (Ankom Tech-
nology, Macedon, NY). The analysis was conducted 
in the laboratory of the Ruminant Nutrition Group 
at the University of Goettingen (Goettingen, Ger-
many). Further information on the specific analytical 
methods of each chemical component can be found in 
Supplemental Table S1 (http:​/​/​dx​.doi​.org/​10​.6084/​m9​
.figshare​.13669966). An overview of the composition 
of the diets is given in Supplemental Table S2. The 
weight of the distributed feed as well as the leftovers 
was also recorded to determine the average DMI of the 
respective feeding group. Furthermore, the quantities of 
distributed concentrate via transponder stations were 
recorded in farms with PMR feeding.

On each farm, 3 to 6 Tinytag climate data loggers 
(Tinytag Plus 2 TGP-4500, Gemini Data Loggers, 
Chichester, UK) were used to record climate data in 
the barn. Thereby, both the temperature and the rela-
tive air humidity were recorded at a height of about 2 
m in the feeding, lying, and drinking areas, with mea-
surements taken every 15 min.
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Figure 1. Data collection scheme, used sequentially in each of the 10 farms (adapted from Mensching et al., 2020c).
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All 100 cows were equipped with a measurement 
bolus (eCow Ltd., Exeter, Devon, UK) for the continu-
ous intrareticular measurement of pH and temperature. 
The boluses were inserted in each of the 10 farms on 
the first day of the preparation and adaptation phase, 
so that there were a maximum of 21 d between the 
insertion and the last day of data collection. Before 
insertion, all boluses were activated in a water bath at 
38.4°C and calibrated in buffer solutions with pH 4 and 
pH 7. The raw data were provided as mean values of 
15-min time intervals for both the reticular tempera-
ture and pH.

Jaw movement and locomotion behaviors were re-
corded using noseband-sensor halters and pedometers 
(RumiWatch, ITIN + HOCH GmbH, Liestal, Switzer-
land). The latter were attached to a rear leg. The raw 
data were converted using the RumiWatch Converter 
v. 0.7.4.13 (RumiWatch, ITIN + HOCH GmbH) into a 
1-h resolution.

Milk yield was measured via on-farm milk quantity 
recording systems every day at each milking. During 
the data collection period, milk samples were taken on 
the evenings of d 8, 10, 15, and 17 and each subsequent 
morning (see Figure 1). The samples were taken sepa-
rately and proportionally to the milk yield according to 
ICAR guidelines (ICAR, 2017) and were preserved with 
Bronopol (Georg Hansen e.K., Wrestedt, Germany). 
Morning and evening samples were analyzed separately 
by the Landeskontrollverband Weser-Ems e.V. in Leer, 
Germany, on the same spectrometer (MilkoScan FT+, 
Foss, Hillerød, Denmark). The standard components 
(fat, protein, lactose, urea) were estimated using the 
MIR-based prediction models provided by the manu-
facturer of the spectrometer. Somatic cell count was 
measured using a flow cytometer (Fossomatic FC, Foss) 
combined with the spectrometer. In addition to the 
standard milk components the MIR spectra were pro-
vided (1,060 wavenumbers per sample). The MIR spec-
tra consisting of transmittance values (T) were con-
verted into absorbance values (A) using a logarithm 
function with A = −log10(T), as is usually done in 
spectrometry (Gengler et al., 2016). In the remainder of 
this paper, only absorbance spectra are considered. The 
raw spectral data were standardized according to Gre-
let et al. (2015). Afterward, 27 further traits containing 
information on the fine milk composition were predicted 
using models based on the studies of Soyeurt et al. 
(2007, 2011, 2012) as well as on further unpublished 
work from the Gembloux Agro-Bio Tech, University of 
Liège (GxABT, Gembloux, Belgium) and the Walloon 
Agricultural Research Center (CRA-W, Gembloux, 
Belgium). Included were predictions of short-chain FA 
(chain length of 4 to 10 carbons), medium-chain FA 
(chain length of 12 to 16 carbons), long-chain FA 

(LCFA, chain length of 17 to 18 carbons), and milk 
lactoferrin content (LF). Only the predictions on FA 
with 15 carbon atoms within the medium-chain FA 
group are from the unpublished work, whereas all other 
predictions are based on published results. The applied 
MIR-based PLS regression models for prediction of FA 
related traits are characterized by a coefficient of deter-
mination of cross-validation of 0.46 ≤ Rcv

2  ≤ 0.99, a 
ratio between standard deviation (SD) of the trait to 
the root mean squared error of cross-validation (RM-
SEcv) of 1.4 ≤ RPDcv ≤ 10.0, and a coefficient of de-
termination of validation of 0.39 ≤ Rval

2  ≤ 0.98. For 

LF, the model statistics are Rcv
2  = 0.72, RPDcv = 1.86, 

and Rval
2  = 0.60.

During the data collection period, blood samples 
were collected from the vena caudalis mediana on d 9, 
11, 16, and 18, up to a maximum of 3 h after morning 
milking (see Figure 1). Separate tubes with serum clot 
activator were used, one for BHB and nonesterified FA 
(NEFA) in serum and another one for glucose determi-
nation. The analysis was conducted in the laboratory of 
the Institute of Veterinary Medicine at the University 
of Goettingen (Goettingen, Germany). See Supplemen-
tal Table S1 (http:​/​/​dx​.doi​.org/​10​.6084/​m9​.figshare​
.13669966) for further details.

Secondary Data Set

The data set for model application consists of the 
monthly milk test day recordings of the entire herds 
of the same farms and was gathered for 1 yr from the 
beginning of the primary data collection described 
previously. Only data from farms that perform the A4 
milk testing scheme according to the ICAR guidelines 
(ICAR, 2017) with proportional milk test day sampling 
consisting of evening and morning milk samples were 
considered. This was the case for 9 out of 10 farms. 
The pooled samples were analyzed on the same spec-
trometer as for the primary data set. The resulting 
secondary data set comprised 21,024 spectra from a 
total of 3,381 animals up to 305 DIM. In addition to 
the determination of the standard milk components, 
the spectra were standardized and the same predictions 
were made as for the primary data set.

The temperature in the barn was not recorded during 
collection of the secondary data. However, because it 
is needed in the further course of this work for cor-
rection purposes of fixed environmental effects, it was 
estimated using a linear model [coefficient of determi-
nation (R2) = 0.99, residual SD = 0.67°C] that was 
developed by Mensching et al. (2020c) and established 
on the primary data set. In this model, external climate 
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data from a nearby weather station of the German 
Weather Service (DWD Climate Data Center, 2018), 
and estimated farm effects were used to predict the 
temperature in the barn.

Data Preparation

Primary Data. To investigate the association 
between the feed analysis data and the other traits 
at farm level, the feed analysis data were calculated 
using the median per trait and farm. For farms with 
supplementary feeding of concentrates via transponder 
stations, the composition of the total diet was esti-
mated proportionally to the herd-based average DMI 
and the average amount of concentrates. In farms with 
PMR feeding, it was assumed that the peNDF > 8 of 
the entire diet is traced back only to the PMR and 
not to the supplemented concentrate feed. Consider-
ing the average herd DMI of PMR and concentrate 
feed, the peNDF > 8 of the entire diet was estimated 
by multiplying the share of PMR of the entire DMI 
with the calculated peNDF > 8 content of PMR. See 
Supplemental Table S3 (http:​/​/​dx​.doi​.org/​10​.6084/​m9​
.figshare​.13669966) for the resulting estimated chemical 
compositions of the entire diets.

The other data recordings were based on a variety 
of different data collection systems and methods. They 
differed particularly in their temporal resolution. There-
fore, a data aggregation and a subsequent merging were 
required. Because the final models are intended to be 
applicable to proportional sampling test day records, 
all data were aggregated on a daily basis.

The continuously recorded temperatures of the barn 
were aggregated by calculating daily arithmetic mean 
values s.T( ).  The daily reticular mean pH r.pH( )  and 

the daily reticular pH range (r.ΔpH) were derived 
from the continuously recorded reticular pH data. Be-
cause the reticular temperature is significantly influ-
enced by water intake (Liang et al., 2013), the median 
(r.Tmed) was used as a robust statistic for the aggrega-
tion. An arithmetic mean, however, would systemati-
cally underestimate the daily average reticular tem-
perature by about 0.25°C. The jaw movement data in 
hourly resolution with information on eating and rumi-
nation duration per hour were aggregated by calculat-
ing the sum of the daily rumination and eating duration 
(Σ.Rt and Σ.Et). In addition, the daily mean rumina-
tion chewing frequency RCf( ) per minute was deter-

mined by dividing the sum of daily rumination chews 
by the daily rumination duration. Based on the hourly 
pedometer data, the daily lying duration (Σ.Lt) was 
calculated by summation. The milk yield was calculated 

from the sum of evening and morning milking accord-
ing to the regular test day sampling procedure. Further, 
the MIR-predicted milk traits and MIR spectra were 
pooled proportionally to the morning and evening milk 
yield. The average milk yields, pooled milk traits, and 
MIR spectra were assigned to the day of the evening 
milking sample. The blood values were allocated to the 
previous day. This approach is also supported by the 
results of Loor et al. (2007), who observed that NEFA, 
BHB, and glucose levels responded with a 1-d delay to 
a feed restriction. Thus, the aim was to compensate for 
the time delay caused by the ruminal fermentation as 
well as by the actual digestion, to ensure a realistic 
time assignment of the individually measured variables.

To normalize the distributions of the BHB and NEFA 
values of the blood as well as the SCC in the milk, 
the former were log10 transformed (e.g., Grelet et al., 
2019), and the latter were transformed by calculation 
of SCS according to Wiggans and Shook (1987). The 
FA traits predicted by standardized MIR spectra were 
considered as proportion of the total milk fat.

Data acquisitions with automated recording systems 
and sensitive measuring instruments in difficult en-
vironments such as agricultural practice are prone to 
failure and thus have to be investigated with caution. 
Therefore, a multivariate plausibility assessment ac-
cording to Mensching et al. (2020c) was applied to the 
data set, which was aggregated on a daily basis. In this 
procedure, the observations of all traits were classified 
as “physiologically normal,” “physiologically extreme,” 
or “implausible,” considering various simultaneously 
recorded data. Observations classified as implausible 
were set to missing in the data set. This concerned 
sensor, performance, blood, and milk MIR spectral 
data as well as milk MIR-based predictions. However, 
if it was noticed that extreme spectra were accompa-
nied by extreme observations in other traits, they were 
not removed from the data set. Observations of 3 ani-
mals were removed even before the plausibility of the 
data was assessed, as they showed unspecific clinical 
signs and thus were treated by the herd manager with 
medications, which might affect rumen fermentation. 
See Mensching et al. (2020c) for more details on this 
procedure.

The MIR-based prediction equations for the FA traits 
and lactoferrin were developed in a setting that covered 
large variability across multiple breeds, production sys-
tems, and countries. However, as outliers can always be 
expected due to variability that is not yet covered but 
is present in new MIR data, precautions were taken 
in an additional step using a statistical approach. Not 
only potential preposterous predictions of the MIR-
predicted FA traits and the lactoferrin (values <0) but 
also extreme values (0.5% of lowest and highest pre-
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dictions) were filtered out by setting them to missing 
before associations with the SRS were investigated.

Secondary Data. In the secondary data set, the 
MIR-predicted FA traits and the lactoferrin were fil-
tered in the same way as in the case of the primary 
data set. Because the model development based on the 
primary data set only covers the early-lactation stage 
(5 ≤ DIM ≤ 37), the secondary data set was reduced 
to the same lactation period for PLS model application 
purposes, with 2,444 remaining observations of 2,254 
cows.

SRS: Underlying Concept

For the development of the SRS, different sources 
of information, or, rather, traits, were combined to 
generate an integrative SARA-associated phenotype 
that best reflects the risk of suffering from SARA. It 
is expected that this will create a trait that is more 
robust and more accurate for displaying SARA than 
individual traits alone. A total of 7 different traits were 
selected, which directly or indirectly can be attributed 
to SARA. The selection of the traits was based on cur-
rent knowledge of science derived from the literature as 
well as on new findings from subsequent data analysis, 
as follows:

•	 By definition, a low ruminal pH value and the 
corresponding acidotic conditions in the rumen 
are indicators of SARA (e.g., Nocek, 1997). There-
fore, a low r.pH  reflecting the ruminal pH should 
increase the SRS.

•	 As demonstrated by Mensching et al. (2020a), 
the ingestion behavior in the course of the day 
is reflected by the pH development. It could be 
deduced that a uniform ingestion behavior is asso-
ciated with a limited pH range. However, irregular 
feed intake is considered a sign of SARA (e.g., En-
emark, 2008). This is in line with the fact that the 
daily average pH and the pH fluctuation range are 
negatively correlated (Mensching et al., 2020b). 
For these reasons, high r.ΔpH should increase the 
SRS.

•	 The ruminal temperature is negatively corre-
lated with pH (AlZahal et al., 2008) and is also 
increased by physiological stress (AlZahal et al., 
2011). For this reason, elevated r.Tmed is supposed 
to increase the SRS.

•	 The daily rumination duration is associated with 
the amount of secreted saliva and thus the ability 
to buffer the ruminal pH (Beauchemin, 2018). For 
this reason, a reduced daily rumination duration 
(Σ.Rt) should increase the SRS.

•	 At herd level, a reduced DMI is a sign of SARA 
(Enemark, 2008). Reduced DMI is basically 
linked to a reduced eating duration and a reduced 
amount of secreted saliva during eating (Jiang et 
al., 2017). Therefore, a reduced daily eating dura-
tion (Σ.Et) is supposed to increase the SRS.

•	 In a preliminary analysis it was determined that 
from several chewing behavior traits, such as total 
chews, mean number of ruminate chews per bolus, 
or mean rumination chewing frequency, the RCf  
in particular had a significant positive association 
with the daily mean pH value. Oba and Allen 
(2000), for example, also observed that higher 
NDF contents are associated with a higher rumi-
nation chewing frequency. Derived from this, low 
RCf  should increase the SRS.

•	 Khafipour et al. (2009a), for example, observed a 
decreased milk yield in a SARA induction experi-
ment. Therefore, low milk yields should also be 
associated with the SRS, where a high SRS should 
be accompanied by low milk yields.

The directed associations with regard to SARA are vi-
sualized in Supplemental Figure S1 (http:​/​/​dx​.doi​.org/​
10​.6084/​m9​.figshare​.13669966).

Statistical Implementation

The challenge was that the data are subject to a 
complex hierarchical structure and that factors such as 
lactation stage, parity, and barn temperature have sig-
nificant effects on the 7 traits. In a first step, adjusted 
values were determined for each trait by correcting the 
raw observations for the influence of fixed effects. For 
each trait, the following linear mixed model (LMM) 
was used:

y T P DIM P F F

TD A e

sijklm ijklm i 2,i ijklm i j j

k l ijkl

= + + + × + +

× + +

β β β0 1 .

mm,

� [1]

where yijklm is observation m of cow l in farm j on test 
day k for trait y, s.Tijklm  is the daily mean temperature 
in the barn, Pi is the fixed effect of parity (1, 2, 3, or 
≥4), and DIMijklm × Pi is the interaction of lactation 
stage DIMijklm and parity Pi; β0 is the intercept, and β1 
and β2,i are regression coefficients. The farm Fj, the in-
teraction of farm and the test day Fj × TDk, and the 
animal Al are considered as normally distributed ran-
dom effects with Fj ~ N(0,σF), Fj × TDk ~ N(0,σF×TD), 
and A1 ~ N(0,σA). Further, eijklm is a random error with 
eijklm ~ N(0,σe). The lme4 package (Bates et al., 2015) 
was used for model fitting in R (R Core Team, 2019). 
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After estimating the fixed effects β0, β1, β2,1, and Pi, 
the adjusted values yjklm

*  were determined as follows:

y y T P DIM P

F F TD

s

= 
jklm ijklm ijklm i 2,i ijklm i

j j

* .= + + ×

+ ×

− +( )β β β0 1

kk l ijklmA e+ + .

� [2]

Consequently, the adjusted values contain only variance 
that is attributed to the random effects of the farm 
(e.g., feeding and management), test day, and animal, 
as well as the residuals. To standardize the scaling, a 
z-transformation was performed as follows:

	 z y
y

jklm
jklm*
*

,( ) = −µ

σ
	 [3]

with µ being the arithmetic mean and σ the SD of 
yjklm

* .

Due to loss of data during the data collection and 
through the plausibility checks, n = 357 of theoreti-
cally 400 observations (100 cows with 4 repeated mea-
surements) with MIR spectra remained. Thereof, only 
280 showed complete cases for the 7 traits of interest. 
Because this additional data loss of about 22% of the 
observations is caused by only 7.6% of missing values, a 
multiple imputing procedure based on a principal com-
ponent analysis (PCA) model was applied to impute 
missing data according to Josse and Husson (2016), to 
permit analysis of at least all 357 cases with available 
MIR data. This was done using the MIPCA function 
from the missMDA (Husson et al., 2019) package in 
R. In this procedure, 100 imputed data sets were cre-
ated using the bootstrap method from which the final 
estimates were determined. The optimal number of 
principal components (PC) was determined via cross-
validation using the estim_ncPCA function from the 
same package. The decision was made based on graphi-
cal examination of the mean squared error of prediction 
depending on the number of used PC.

In a final step, the SRS was calculated as a linear 
combination of the z-transformed and adjusted values 
z yjklm

*( )  and a directed weight wπ, as follows:

	 SRS z y w with wjklm= ( ) × −{ }
=
∑ * , , .

π π
π

π ∈
1

7
1 1 	 [4]

Traits for which low values are supposed to cause a 
high SRS were weighted with wπ = −1 and the others 
with wπ = 1 (see Supplemental Figure S1, http:​/​/​dx​
.doi​.org/​10​.6084/​m9​.figshare​.13669966). After calcula-

tion of the SRS, an LMM according to Equation [1] 
was set up to investigate the variance components of 
the random effects.

Association with Other Traits and Feed Data

To visualize the association between SRS and other 
reference traits, performance data, blood characteris-
tics, and MIR-predicted traits, the observations were 
divided into 5 groups of equal size using the SRS, with 
the quintiles of the SRS as thresholds. Then group af-
filiation was tested for all traits with an LMM, accord-
ing to Equation [1], with additional consideration of the 
SRS class as a fixed effect. The estimated group means 
(LSM) were compared with Tukey’s post hoc test. For 
illustration purposes, the LSM of milk main compo-
nents and MIR-predicted FA were plotted in a spider 
map, which was created with the radarchart function of 
the fmsb (Nakazawa, 2019) package in R.

The feed analysis data averaged per farm were exam-
ined in a PCA. For the SRS and the other 7 traits, LSM 
estimates corrected for DIM, parity, and temperature 
in the barn were determined for the 10 farms using an 
LMM according to Equation [1], considering the farm 
as fixed instead of random effect. Afterward, these data 
were projected into the space spanned by the first 2 PC 
of the feed data.

Development of MIR-Based Prediction Equations

Milk MIR spectra are characterized by very high cor-
relations between the values of the individual number 
of wavenumbers. Therefore, PLS regression was used to 
develop the prediction equations for both the SRS and 
the available traits derived from the sensor data, most 
of which were also used for the construction of the SRS. 
The latter was done to assess how much the individual 
traits are associated with the milk MIR data. Regard-
ing SARA, prediction equations for the 2 pH parameters 
r.pH  and r.ΔpH are also of interest. An accurate MIR-
based prediction of the traits would offer a major ad-
vantage over time-consuming and costly measurements, 
such as those using the eCow bolus or the RumiWatch 
halter, as it could be implemented cost-effectively and 
on a large scale in the existing milk recording system.

The supervised learning method PLS regression cor-
responds to a multiple regression in which the regres-
sion coefficients are estimated in an iterative procedure 
that is analogous to the PCA regression technique. 
What matters is that the design matrix X (MIR spec-
tra) is decomposed in a reduced amount of uncorrelated 
latent variables (LV), consisting of scores and loadings, 
in such a way that results in maximum covariance to 
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the response variable y (e.g., SRS). In a further step, a 
regression is performed on those reduced variables to 
predict y. The number of LV used to derive the calibra-
tion model affects model performances in terms of root 
mean squared error (RMSEcal) and coefficient of de-
termination Rcal

2( ),  and is a sensitive parameter to 

tune, as it may induce under- or overfitting of the 
model.

The number of LV were determined for each setting 
with an interleaved stratified 10-fold cross-validation, 
whereby the folds were divided in such a way that the 
repeated measurements of an animal were all situ-
ated into a common fold, to avoid a single cow having 
measurements in different folds. Then, for each trait, 
the model with the smallest RMSEcv was selected, but 
the number of LV was limited to 15. In this work, the 
SIMPLS (de Jong, 1993) algorithm was used, apply-
ing the PLS (Mevik and Wehrens, 2007) package in R. 
The resulting model, which can be used for predictions 
based on new milk MIR data, can be described as

	 y x ei j ij

n

i= + +
=
∑β β0

1j

, 	 [5]

where yi is the response variable, β0 is the estimated 
intercept, and β1, . . . , βn are the regression coefficients 
for the 1, . . . , n values xij of the respective wavenum-
ber of the optionally pretreated and reduced spectrum. 
Further, ei is a random error with ei ~ N(0,σe).

Numerous options for PLS modeling exist, of which 
the following settings have been systematically evalu-
ated, starting with different spectral pretreatments:

•	 None
•	 0/2/5, 1/2/5, 2/2/5 = Savitkzy-Golay smoothing 

and first and second derivative with a polynomial 
of second degree and a window length of 5 wave-
numbers (e.g., Wallén et al., 2018)

•	 Gap/1/5, gap/2/5 = first and second linear deriv-
ative with a gap of 5 wavenumbers (e.g., Soyeurt 
et al., 2011)

•	 LP(DIM,1) = Legendre polynomial transforma-
tion of the spectrum according to Vanlierde et al. 
(2015) up to the first degree to account linearly 
for the DIM

In addition, the part of the spectrum used in the PLS 
modeling was varied:

•	 Full spectrum with 1,060 wavenumbers
•	 Reduced spectrum with 516 wavenumbers, ac-

cording to Grelet et al. (2015)

•	 Reduced spectrum with 212 wavenumbers, ac-
cording to Grelet et al. (2016)

In each case, the pretreatment was carried out first and 
then the selection of wavenumbers was performed.

To get an objective view on the model performances, 
the primary data set was divided into a calibration and 
a validation data set. This was done individually for 
each trait, using data from 8 farms for model develop-
ment and data from 2 farms for external validation. To 
select the farms, the mean values of the respective 
traits per farm were calculated and ordered. Observa-
tions from the second- and ninth-ordered farm were 
then selected for validation. This was done to take into 
account the hierarchical data structure and to ensure 
that both the calibration and validation data set cover, 
as far as possible, the range of the respective traits. To 
evaluate the models, common statistics were calculated. 
These include RMSEcal, RMSEcv, RMSEval, 
R , R , R ,cal

2
cv
2

val
2  and RPDcv. For more information on 

these statistics, see Soyeurt et al. (2011) and Williams 
and Sobering (1993).

Application on the Secondary Data

To further validate the SRS prediction equation, the 
model was applied to the secondary data set. The milk 
MIR-predicted SRS values were assigned to an SRS 
class using the same quintile-based group boundaries as 
for the primary data set. Then the association between 
the milk MIR-predicted SRS class and the other MIR-
predicted traits was examined, using the same LMM 
as for the primary data set. Again, a spider map was 
created to illustrate estimated LSM for the milk main 
components and the MIR-predicted FA, depending on 
the milk MIR-predicted SRS class.

All data preparation, creation of figures, and statisti-
cal analyses were performed with programs developed 
in the software environment R.

RESULTS AND DISCUSSION

Descriptive statistics of sensor data–derived traits, 
blood characteristics, performance, and milk composi-
tion–related traits can be found in the Supplemental 
Tables S4 and S5 (http:​/​/​dx​.doi​.org/​10​.6084/​m9​
.figshare​.13669966).

SRS Development

By combining several traits into one integrative in-
dicator trait, we accounted for the fact that signs of a 
disease are often reflected not only in one but in several 
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measureable traits. As the health state with regard to 
SARA can vary in a continuous range between physi-
ologically healthy and clinically diseased (Enemark et 
al., 2002), the design of the SRS underlies a continuous 
scale. The traits used for its development were derived 
from 3 different independent data acquisition systems 
(intrareticular measurement bolus, noseband-sensor 
halter, and milk performance). Therefore, the SRS 
should reflect the health status of the animal more ac-
curately than one trait alone. Alternative approaches 
are also possible, such as those of Grelet et al. (2019) 
and De Koster et al. (2019), who divided the meta-
bolic status of cows by k-means clustering of 4 blood 
metabolites into 3 classes as new trait or phenotype, 
respectively, which was modeled using MIR data.

The PCA-based imputation procedure for the 7 ad-
justed and z-transformed traits solved the problem of 
missing values and maximized the number of observa-
tions for the downstream analysis. The optimum number 
of PC determined for imputing using the estim_ncPCA 
(Husson et al., 2019) function was 3. After imputation, 
a variable factor map (Figure 2) was generated, which 
shows the quality of the imputation as well as visu-
alizing the relationships of the 7 traits. This variable 
factor map displays the loadings of the variables in the 
space of the first 2 PC, which together explain 48.81% 
of the variance. The points correspond to the loadings 
that were determined during the 100 imputations with 
the bootstrap method, whereas the thin arrows show 
the loadings of the final averaged data set. Because the 
point clouds around the arrowheads are only slightly 
scattered, the imputing quality can be classified as 
good enough to use those imputed values. As expected, 
the signs of the loadings of all traits of the first PC 
are in line with the directed weights, which were used 
for the development of the SRS. Additionally, the SRS 
was projected into the same space as a supplementary 
variable (bold arrow). The SRS lies almost completely 
along the first PC, so that it covers a large part of the 
observed variance of the 7 traits.

The design of the SRS presented here is only a first 
approach and can be further optimized and extended. So 
far, only the direction (−1 or 1) of the selected weights 
was defined for the SRS calculation. It is conceivable 
to individually adjust the weights while maximizing 
the association to a gold standard of the true SARA 
status—for instance, based on veterinary diagnostics or 
ventral ruminal pH measurements. However, because 
such data are not available, the possibilities in the pres-
ent study are limited.

Analyzing the SRS with an LMM, the following vari-
ance components were estimated: σF = 1.20, σF × TD = 
0.49, σA = 2.81, and σe = 2.02. Considering the fact 
that all 10 farms are above average regarding perfor-

mance and the assumption of high interanimal variance 
(Humer et al., 2015; Jing et al., 2018), the variance 
components estimated here seem plausible and meet 
the expectations with regard to SARA.

Associations of the SRS with Other Traits  
and Feed Data

The relationship between the developed SRS and the 
other variables used for its development is illustrated in 
Figure 3. Furthermore, information on 8 additional 
variables is reported, including lying duration, 3 perfor-
mance parameters (fat yield and protein yield), SCS, 
and milk LF content, as well as 3 blood characteristics 
(BHB, NEFA, and glucose). Shown are the LSM of 
each variable depending on the quintile-based SRS 
class, corrected for the fixed effects of the temperature 
in the barn, the parity, and the interaction of DIM and 
parity. The figure shows that the weighting of each 
variable used to construct the SRS is reflected in the 
estimated LSM with significant (P < 0.05) and directed 
differences along the means of quintile-based SRS 
classes, except for r.pH.  Nevertheless, a trend can also 
be seen for r.pH,  which would have a significant effect 
if analyzed with SRS as regression instead of the SRS 
class in the otherwise identical model. With regard to 
the lying duration, significant differences can also be 
observed.

Particularly remarkable is the drop in performance by 
approximately 20% with increasing SRS classes, which 
affects not only milk performance but also daily fat and 
protein yield. The SCS and LF levels are significantly 
higher in the highest SRS class than in the lowest. Both 
are well-known indicators of mastitis (Soyeurt et al., 
2012). This indicates that the SRS may be linked to 
other diseases. This was to be expected, particularly 
as the decrease in performance, eating duration and 
rumination activity are unspecific signs that can be 
attributed to clinical conditions of various disorders, 
such as acidosis, mastitis, or claw disorders (Fleischer 
et al., 2001; Enemark, 2008). To a certain degree, this 
is inevitable and generally not a disadvantage, as the 
superior goal to differentiate between diseased and 
healthy animals is pursued. In addition, we assume that 
the value added by taking into account the additional 
traits compensates for the lower specificity. However, 
this should be verified with an external data set in-
cluding veterinary diagnostics or ventral ruminal pH 
measurements.

The LF content of milk is known to be influenced by 
the lactation stage and is also negatively correlated with 
milk yield (Cheng et al., 2008). Consequently, higher 
LF values are to be expected as a result of lower milk 
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yield. Nevertheless, when considering the daily amount 
of LF excreted in milk instead of the concentration, 
a positive trend (P = 0.058) was still observed with 
SRS as regression term instead of the SRS as a class 
variable in the model. Because LF plays an important 
role in the immune system of mammals, including iron-
binding abilities and bactericidal effects (Baker and 
Baker, 2004), the increased LF could indicate increased 
immune responses.

Blood contents of BHB and NEFA, which are often 
used as indicators for metabolic disorders (Oetzel, 
2004), do not show a directional relationship to the 
SRS class. However, an indirect relationship via SARA-
related lower feed intake, the resulting reduced energy 
balance, and the higher BHB and NEFA levels associ-

ated with body fat mobilization is conceivable (Baird, 
1982; Enemark, 2008). An increase in the blood glucose 
level is observed if SRS is high. This can be consistent 
with the results of Khafipour et al. (2009a,b) and Li et 
al. (2012), who reported increased blood glucose concen-
tration as consequence of a SARA challenge. Consider-
ing that propionate is known for its glucogenic role as 
precursor of gluconeogenesis (Miettinen and Huhtanen, 
1996), a reason for this could be a higher concentra-
tion of propionate in ruminal VFA caused by diets rich 
in concentrate (Lechartier and Peyraud, 2011). This 
process could also be in line with the fact that SARA-
promoting diets can lead to an enrichment of bacterial 
endotoxins in the form of lipopolysaccharides in both 
the rumen and blood plasma, which in turn can lead 
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Figure 2. Variable factor map using the first 2 principal components based on the averaged multiple imputed data set of the 7 adjusted and 
z-transformed traits. In addition to the loadings from the variables of the averaged data set (gray arrows), the loadings from the 100 imputed 
data sets are projected in the same space (points). Furthermore, the SARA risk score was projected into the same space (bold black arrow). 
RCf =  daily mean rumination chewing frequency; r.pH =  reticular daily mean pH; r.Tmed = median of the daily reticular temperature; SRS = 
SARA risk score; MY = milk yield; r.ΔpH = daily reticular pH range; Σ.Et, Σ.Rt = daily durations of eating and rumination, respectively.
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to inflammatory reactions (Khafipour et al., 2009b). 
However, an activated immune system is characterized 
by increased body temperatures and an increased glu-
cose requirement (Kvidera et al., 2017). Taking into 
account the fact that glucose is an important precursor 
of lactose (Kleiber et al., 1955), the significant lower 
milk yield and thus reduced release of lactose via milk 
could be linked to the higher SRS.

The PCA results of dietary characteristics as well as 
the LSM of SRS and the other 7 traits per farm are 
shown in Figure 4. The feed data–based variable factor 
map shows the space spanned by the first 2 PC explain-
ing together 67.23% of the variance. The tips of the 

gray arrows correspond with the loadings of the feed-
related variables. In addition, the SRS, as well as the 
other 7 traits were projected into the same space as 
supplementary variables, as shown using black bold ar-
rows. It can be seen from this figure that the diets of 
the 10 farms differ mainly with regard to the ratio of 
properties associated with fiber (NDF after amylase 
treatment and ashing, crude fiber, peNDF > 8) to en-
ergy (starch, nitrogen-free extract, NEL), as they posi-
tion opposite along the first PC. As expected, the daily 
average pH also tends to point in the direction of the 
fiber-associated variables, whereas it is opposite to the 
variables that are typical for diets rich in concentrate. 
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Figure 3. LSM (±1.96 SE) for the 7 reference traits used for the construction of the SARA risk score (SRS; light gray background), further 
performance traits, and blood characteristics (307 ≤ n ≤ 354), depending on the quintile-based SRS classes. Post hoc comparison of LSM with 
Tukey’s test at P = 0.05. Same superscripts indicate nonsignificant differences. The log10 BHB and NEFA estimates were back transformed to 
the original scale. BHB = blood β-hydroxybutyrate level; GLU = blood glucose; RCf =  daily mean rumination chewing frequency; r.pH =  
reticular daily mean pH; r.Tmed = median of the daily reticular temperature; SCS = somatic cell score according to Wiggans and Shook (1987); 
LF = milk lactoferrin; MY = milk yield; NEFA = blood nonesterified fatty acid level; r.ΔpH = daily reticular pH range; Σ.Et, Σ.Rt, and Σ.Lt 
= daily duration of eating, rumination, and lying, respectively.
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Thus, a large consensus with the results of Mensching 
et al. (2020b) can be seen, where feed properties and 
pH parameters of meta-analytical data were also pre-
sented jointly in a variable factor map. Consequently, 
Figure 4 confirms the basic relationships between diet 
properties and pH development with regard to SARA 
(Kleen et al., 2003; Enemark, 2008). Interestingly, the 
SRS is positioned in the direction of starch and nitro-
gen-free extract, as well as opposite to the fiber-associ-
ated properties and the r.pH.  This generally confirms 
that the SRS has a high potential to indicate SARA.

Presumably, the observed relationships will not only 
be attributable to the composition of the diet but can 
also be related to the individual feed intake behavior of 

the animals. In this respect, Coon et al. (2019) demon-
strated that part of the observed interanimal variance 
regarding susceptibility to SARA is attributable to 
behavioral differences in sorting against long particles.

The relationship between the milk main components, 
FA traits, and SRS are shown in Figure 5 in a spider 
map. In this figure, one can see that most of the milk 
traits display a directed relationship with the SRS 
class. With regard to the milk main components, higher 
SRS are accompanied by increased fat and decreased 
protein and lactose. It is known that lower lactose levels 
are associated with udder diseases, as is the case with 
the previously discussed increased SCS (Berning and 
Shook, 1992). In terms of SARA, a milk fat depression 
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Figure 4. Variable factor map using the first 2 principal components of the feed analysis data. In addition to the loadings from the feed-
related variables (gray arrows), the SARA risk score (SRS), and the other 7 traits used for its development were projected into the same space 
(bold black arrows). aNDFom = NDF after amylase treatment and ashing; CF = crude fiber; CL = crude fat; LF = milk lactoferrin; MY = milk 
yield; NfE = nitrogen-free extract; peNDF > 8 = physically effective NDF retained on an 8-mm sieve; RCf =  daily mean rumination chewing 
frequency; r.pH =  reticular daily mean pH; r.Tmed = median of the daily reticular temperature; r.ΔpH = daily reticular pH range; Σ.Et, Σ.Rt, 
and Σ.Lt = daily duration of eating, rumination, and lying, respectively.
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would be expected (Enemark, 2008). However, with 
regard to SRS, the opposite was observed in this study, 
namely higher fat levels accompanied by significantly 
lower daily fat yields, the latter being mainly related to 
the lower milk yield (see Figure 3). This could be at-
tributed to the fact that all cows were in early lactation 
with DIM ≤37. Enemark et al. (2004) have described 
a numerically negative but not significant association 
between pH and milk fat content in early-lactation 
cows, from which they concluded that the individual 
fat content is not suitable as an indicator for SARA at 
this stage of lactation. The increase in milk fat might 
be caused by a reversed dilution effect as a consequence 
of reduced milk performance.

Further, lower levels of short- and medium-chain 
FA are observed with a higher SRS, whereas both 
significant and nonsignificant associated FA are found 
in LCFA. No significant association between SRS class 
and trans LCFA can be observed, whereas significantly 
higher levels of the cis LCFA C18:2 cis-9,cis-12, C18:1 
cis, and C18:1 cis-9 can be found with an increasing 
SRS class. Some patterns in the milk FA profile are 
similar to those already observed by Gross et al. (2011) 
as a consequence of a negative energy balance. These 
include elevated C18:1 cis-9 as well as lower levels of 
the FA from the de novo synthesis (≤16 carbon atoms) 
as a result of a higher proportion of fat resulting from 
the mobilization of adipose tissue. However, a negative 
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Figure 5. Spider plot (Nakazawa, 2019) to visualize standardized LSM of milk main components (%) and mid-infrared–predicted fatty acid 
traits (% of fat) depending on a quintile-based classification of the SARA risk score for the primary data set (351 ≤ n ≤ 357). The axes of the 
individual variables range from the 10 (x0.1) to the 90% (x0.9) quantile. The Cx:​y​-coding includes the number of C-atoms (x) as well as the num-
ber of double bonds (y) of the respective fatty acid. P-values for the effect of class affiliation on the content of the respective fatty acid from the 
ANOVA table: ***P < 0.001; **P < 0.01; *P < 0.05; N.S. = P ≥ 0.05. FA = fatty acids; BCFA = branched-chain FA; OFA = odd-chain FA.
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energy balance is plausible, as poor body conditions are 
also considered to be an indication for SARA (Nocek, 
1997).

Additionally, the milk odd- and branched-chain FA, 
which are essentially derived from bacteria that have 
been built and left the rumen, are considered to be 
indicators of ruminal fermentation (Vlaeminck et al., 
2006). In this regard, significantly higher levels of C17:0 
and lower levels of all C15 FA could be associated with 
increased SRS in the primary data set. In comparison, 
Vlaeminck et al. (2006) determined a positive associa-
tion for C15:0 with the ruminal propionate concentra-
tion, whereas they found an opposite association for 
C15:0 iso. Also, Van Nespen et al. (2005) observed 
a changed FA profile of the milk with increased iso 
C17:0, C15:0, C18:2 cis-7,trans-11, and C18:1 trans-10 
+ C18:1 trans-11, and lower contents of iso C14:0 as 
consequence of increased dietary starch content.

MIR-Based PLS Regression Models

Descriptive statistics for all traits for which milk 
MIR-based PLS models were developed are summarized 
in Table 1 separately for the data sets used for calibra-
tion and for external validation. All traits are nearly 
symmetrical and approximately normally distributed. 
However, it is noticeable that the r.ΔpH tends to show 
extreme values in the upper range, and r.pH,  daily ru-
mination, and eating duration in the lower range, which 
can be indicative for SARA or even acute ruminal aci-
dosis–related conditions. Considering the observed 
SARA prevalence of about 20% in German herds (Kleen 
et al., 2013), this is plausible, as it can be assumed that 
the majority of the animals were in a physiologically 
healthy condition and only a small number were dis-
eased.

Table 1 also contains model characteristics, model 
statistics, and the results of the external validation on 
individual PLS calibration models. Furthermore, Fig-
ure 6 shows for all traits a plot observed against the 
predicted values from cross-validation and external 
validation. The use of the entire spectrum led to the 
best results only for RCF;  otherwise, the reduced spec-
trum with 212 or 516 wavenumbers always led to the 
best model performances. This was expected, consider-
ing that large parts of the spectrum contain noisy re-
gions due to the water content of milk (Grelet et al., 
2015). Furthermore, it was observed that the choice of 
spectral pretreatment is dependent on the respective 
trait. The fit statistics of the best models only indicate 
moderate model performances. Looking at Rval

2  of the 
8 traits, only the models for SRS and r.ΔpH show a 

noteworthy potential, with R  val
2 = 0 37.  and 

R  val
2 = 0 49. .  Consequently, these models explain only 

a part of the observed variation and are not able to 
make quantitative accurate predictions. All other mod-
els are characterized by Rval

2 < 0 10.  and thus show in-
ferior performance.

Especially for the SRS and for r.Tmed, models with 
a relatively high number of LV emerged. As a con-
sequence, a lack of robustness of the model is to be 
expected, which is also reflected in a large discrepancy 
between the results of calibration and cross-validation. 
But this is also true for all other models. Another reason 
could be the small size of the data set, and associated 
lack of variability (Davies and Fearn, 2006).

In their current forms, these models cannot be used 
for individual cow management. However, some models 
seem to be able to distinguish between extreme values. 
In this context, Gengler et al. (2016) argued that, un-
der the assumption of random prediction errors, the 
application of such models to a group of animals could 
increase the accuracy of the predictions. Considering 
the fact that these traits are very complex and do not 
correspond to direct components of the milk, these as-
sociations are appreciable and indicate a high potential 
to obtain additional information that goes beyond 
the standard components relevant for milk payment. 
Because the present PLS models are developed with 
a relatively small amount of data, with few suspected 
cases of SARA, it is likely that the reduced data volume 
causes an underestimation of the potential R2 (Davies 
and Fearn, 2006). Therefore, it would be of great inter-
est to implement a data set with a higher proportion of 
SARA-affected cows, to evaluate potential increase of 
the model performances.

It is interesting that the Rcv
2  and Rval

2  for r.pH  are 
very low, whereas they are at least moderate for r.ΔpH. 
This could have several reasons. In terms of r.pH,  it 
could be that it is generally not well predictable. How-
ever, the low accuracy could also be attributable to the 
reticular pH measurement. Although the reticular and 
(ventral) ruminal pH are highly associated, it is not 
possible to infer precisely from reticular pH to ruminal 
pH, with the latter being the target pH with regard to 
SARA (Falk et al., 2016). Another reason could be the 
accuracy of the measurement technique. It is well 
known that drift is a problem of indwelling boluses 
(e.g., Villot et al., 2018), although it is more likely to 
occur several months after insertion of the bolus in the 
reticulum. However, the drift would primarily affect the 
accuracy of r.pH  and not of r.ΔpH.
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Comparing the achieved model statistics for the SRS 
with the results of others who have worked on MIR-
based prediction of complex indirect traits, higher per-
formance can be found. McParland et al. (2014), for 
example, were able to achieve a cross-validated correla-
tion between observed and predicted values when mod-
eling the energy balance with correlation coefficient (r) 
= 0.67 and Rcv

2 = 0 45. ,  respectively. In the MIR-based 
prediction of methane emissions measured with a respi-
ration chamber Vanlierde et al. (2018) even achieved an 
Rcal

2  of 0.65 and Rcv
2  of 0.57 using a cross-country data 

set. However, those studies are based on a large vari-

ability, with more than 1,500 records and data from 5 
countries. This encourages increase of the current data 
set with complementary records, which, at best, also 
cover the entire lactation period.

Because both the FA traits and the SRS can be esti-
mated at least moderately with the milk MIR spectra 
and they show moderate associations, the predictability 
of the SRS is likely to be based on altered milk com-
position. Therefore, the following causality chain can 
be hypothesized: diet (composition), environment (e.g., 
temperature), individual animal (e.g., microbiome, 
genetics, behavior, lactation stage, parity), as well as 
interactions between them, influence the ruminal fer-
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Table 1. Descriptive statistics of the calibration and validation data, model characteristics and statistics, as well as validation results of the 
milk mid-infrared spectra–based partial least squares calibration models1

Unit

Trait

SRS r.pH r.ΔpH
 r.Tmed, 

°C
Σ.Rt, 
h/d

Σ.Et, 
h/d

RCf,
1/min  

Σ.Lt, 
h/d

Descriptive statistics of 
  calibration data
  n 290 253 233 259 277 280 268 268
  nA 79 70 70 73 78 78 79 79
  Mean −0.12 6.19 0.76 39.36 9.44 5.32 68.15 10.57
  SD 3.48 0.16 0.22 0.33 1.27 1.26 5.13 2.50
  Min −6.51 5.54 0.38 38.30 3.39 1.65 55.48 3.37
  Median −0.56 6.23 0.73 39.30 9.57 5.29 67.94 10.73
  Max 16.45 6.52 1.67 41.30 11.94 9.04 79.87 18.38
Descriptive statistics of 
  validation data
  n 67 54 74 62 59 60 75 66
  nA 20 19 19 20 17 18 18 19
  Mean 0.32 6.17 0.78 39.41 9.42 5.40 68.74 10.57
  SD 4.12 0.17 0.21 0.40 1.33 1.28 5.69 3.61
  Min −7.16 5.77 0.40 38.90 5.00 1.46 59.57 1.38
  Median 0.20 6.21 0.74 39.30 9.57 5.45 68.48 10.75
  Max 14.07 6.49 1.56 40.70 11.54 7.87 83.23 17.25
Model characteristics
  Pretreat gap/1/5 gap/1/5 2/2/5 gap/1/5 — — 0/2/5 2/2/5
  LP — — — — LP(DIM,1) — — —
  WN 516 212 516 212 212 212 1,060 212
  LV 12 3 3 13 8 8 3 3
Model statistics and 
  validation results
  RMSEcal 2.36 0.15 0.18 0.24 1.02 1.06 4.34 2.30
  RMSEcv 2.91 0.16 0.19 0.30 1.10 1.17 4.85 2.40
  RMSEval 3.35 0.18 0.15 0.41 1.45 1.29 5.76 3.42

  Rcal
2 0.56 0.16 0.33 0.52 0.37 0.32 0.29 0.16

  Rcv
2 0.32 0.06 0.23 0.26 0.26 0.17 0.13 0.09

  Rval
2 0.37 0.05 0.49 0.09 0.00 0.03 0.04 0.10

  RPDcv 1.19 1.02 1.14 1.12 1.16 1.08 1.06 1.04
1LP, LP(DIM,1) = Legendre polynomial transformation of the spectrum; see Material and Methods. n = sample size; nA = number of animals; 

min, max = minimum and maximum. Pretreat = spectral pretreatments; see Material and Methods. R , R , Rcal
2

cv
2

val
2 =  coefficient of determina-

tion of calibration model, of cross-validation, and of external validation. RMSEcal, RMSEcv, and RMSEval = root mean squared error of the 
calibration model, cross-validation, and external validation, respectively. RPDcv = ratio of SD of reference to the SE of cross-validation. RCf =  
daily mean rumination chewing frequency; r.pH =  = reticular daily mean pH; r.Tmed = median of the daily reticular temperature; r.ΔpH = 
daily reticular pH range; SD = empirically estimated SD; SRS = SARA risk score; WN = number of wavenumbers; LV = latent variables. Σ.
Rt, Σ.Et, and Σ.Lt = daily duration of rumination, eating, and lying, respectively.
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Figure 6. Scatterplot for reference values against predicted values from cross-validation (light gray dots) and external validation (crosses) 

based on mid-infrared–based partial least squares regression models. R , Rcv
2

val
2 =  coefficient of determination of cross-validation and of valida-

tion, respectively; RCf =  daily mean rumination chewing frequency; r.pH =  reticular daily mean pH; r.Tmed = median of the daily reticular 
temperature; SRS = SARA risk score; r.ΔpH = daily reticular pH range; Σ.Et, Σ.Rt, and Σ.Lt = daily duration of eating, rumination and lying, 
respectively (306 ≤ n ≤ 356).
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mentation process. This is reflected in the ruminal FA 
pattern and subsequently also to some extent in the FA 
pattern of the milk. In turn, this is related to a modi-
fied MIR spectrum.

Because milk fat is considered the most variable 
component of milk, in terms of both concentration 
and composition (Palmquist, 2006), the major part of 
spectral variability is attributable to altered milk fat 
composition. Therefore, it can be assumed that the 
determined associations of the other 7 traits are also 
essentially attributable to an altered milk fat compo-
sition, whereby the model quality achieved for each 
trait provides information about the strength of this 
relationship.

Application on the Secondary Data Set

The developed prediction equation for the SRS was 
applied to the secondary data for observations in the 
same lactation stage (5 ≤ DIM ≤37). As no reference 
values of the SRS are available, this is not an exter-
nal validation in the narrow sense. Nevertheless, the 
SRS predictions were associated with the main milk 
components and the FA profile. The results of this 
investigation are shown in Figure 7 in a spider map 
(Nakazawa, 2019). Comparing this spider map with 
the one in Figure 5, a very high level of agreement is 
noticeable. It seems that for some of the traits, the 
directional relationships are even more evident than in 
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Figure 7. Spider plot (Nakazawa, 2019) to visualize standardized LSM of milk main components (%) and mid-infrared (MIR)-predicted 
fatty acid traits (% of fat) depending on a quintile-based classification of the MIR-predicted SARA risk score for the secondary data set (n = 
2,444; 5 ≤ DIM ≤ 37). The axes of the individual variables range from the 10 (x0.1) to the 90% (x0.9) quantile. The Cx:​y​-coding includes the 
number of C-atoms (x) as well as the number of double bonds (y) of the respective fatty acid. P-values for the effect of class affiliation on the 
content of the respective fatty acid from the ANOVA table: ***P < 0.001; **P < 0.01; *P < 0.05; N.S. = P ≥ 0.05. FA = fatty acids; BCFA = 
branched-chain FA; OFA = odd-chain FA.
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the primary data set. Due to the small number of ob-
servations in the primary data set, it is likely that more 
SARA cases are present in the secondary data set, with 
an increased discrimination between extreme groups. 
Complementary, more FA variation is obviously present 
in the secondary data set.

The fact that higher milk MIR-predicted SRS are 
accompanied with higher levels of odd- and branched-
chain FA, as well as C17:0, validates the SRS ap-
proach, as such directed relationships between the 
milk FA profile and ruminal fermentation properties 
have already been discussed in terms of SARA as a 
consequence of diets rich in concentrate (Fievez et al., 
2012). However, in view of the results generated here, 
it is crucial that the observed changes in the FA pro-
file of Figure 7 are attributed to different values of the 
predicted SRS, as the farm and thus implicitly also 
the feeding was considered as a random effect in the 
used LMM. Nevertheless, farm- and therefore poten-
tial feed-specific effects are reflected in the frequency 
distribution of the predicted SRS classes within indi-
vidual farms (see Supplemental Figure S2, http:​/​/​dx​
.doi​.org/​10​.6084/​m9​.figshare​.13669966). But because 
all SRS classes, and implicitly the varying FA pro-
files, occur in all farms, a large part of the observed 
variation is presumably related to high interanimal 
variance.

CONCLUSIONS

This study developed an innovative approach in 
which information from different independent data 
acquisition systems (intrareticular measurement bolus, 
noseband-sensor halter, and milk performance) were 
combined to design an integrative indicator trait for 
SARA called SRS. At the farm level, higher SRS were 
related to lower daily average pH values, higher levels 
of easily fermentable carbohydrates, and lower levels of 
physical structure in the diet. On the individual level, 
an increased SRS was also found to be linked to a modi-
fied FA profile, in which lower levels of saturated and 
short-chain FA and higher levels of C16:1 cis, C17:0, 
and odd- and branched-chain FA could be observed. 
Furthermore, using a PLS regression model, a milk 
MIR spectra–based prediction equation with a moder-
ate predictability was established, demonstrating the 
high potential of milk composition-based characteriza-
tion of the health status of lactating cows. Based on 
our research, a first approach for a SARA monitoring 
could be implemented on a large scale in routine milk 
performance testing using the MIR-based prediction of 
the SRS.
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