complex human disease; epistasis; essential genes; evolution; interchromosomal; linkage disequilibrium; long-range; pleiotropy; variable expressivity; Linkage Disequilibrium/genetics; Genotype; Biological Specimen Banks; United Kingdom; Polymorphism, Single Nucleotide/genetics; Genome-Wide Association Study; Epistasis, Genetic; Polymorphism, Single Nucleotide; Genetics; Genetics (clinical)
Abstract :
[en] Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Singhal, Pankhuri; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Veturi, Yogasudha; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Dudek, Scott M; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Lucas, Anastasia; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Frase, Alex; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Van Steen, Kristel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique ; Department of Human Genetics, Katholieke Universiteit Leuven, ON4 Herestraat 49, 3000 Leuven, Belgium
Schrodi, Steven J; Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
Fasel, David; Columbia University, New York, NY 10027, USA
Weng, Chunhua; Columbia University, New York, NY 10027, USA
Pendergrass, Rion; Genentech, San Francisco, CA 94080, USA
Schaid, Daniel J; Mayo Clinic, Rochester, MN 55902, USA
Kullo, Iftikhar J; Mayo Clinic, Rochester, MN 55902, USA
Dikilitas, Ozan; Mayo Clinic, Rochester, MN 55902, USA
Sleiman, Patrick M A; Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
Hakonarson, Hakon; Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
Moore, Jason H; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
Williams, Scott M; Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
Ritchie, Marylyn D; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: marylyn@pennmedicine.upenn.edu
Verma, Shefali S ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: shefali.setiaverma@pennmedicine.upenn.edu
The authors would like to acknowledge their funding sources. M.D.R. is supported by R01 HG010067 and U01 AG066833. J.H.M. is supported by R01 LM010098 and U01 AG066833. P.S. is supported by F31 AG069441-01. eMERGE Network (phase III): This phase of the eMERGE Network was initiated and funded by the NHGRI through the following grants: U01HG8657 (Group Health Cooperative/University of Washington); U01HG8685 (Brigham and Women's Hospital); U01HG8672 (Vanderbilt University Medical Center); U01HG8666 (Cincinnati Children's Hospital Medical Center); U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University Health Sciences); U01HG8684 (Children's Hospital of Philadelphia); U01HG8673 (Northwestern University); U01HG8701 (Vanderbilt University Medical Center, serving as the coordinating center); U01HG8676 (Mass General Brigham and Broad Institute); and U01HG8664 (Baylor College of Medicine). The authors would also like to thank Stephen Schaeffer and the participants of the Epistasis Discovery in Genetics and Epidemiology (EDGE) meeting over the years for their insightful discussion and feedback that has guided this project. The authors declare no competing interests.The authors would like to acknowledge their funding sources. M.D.R . is supported by R01 HG010067 and U01 AG066833 . J.H.M . is supported by R01 LM010098 and U01 AG066833 . P.S . is supported by F31 AG069441-01 . eMERGE Network (phase III): This phase of the eMERGE Network was initiated and funded by the NHGRI through the following grants: U01HG8657 (Group Health Cooperative/ University of Washington ); U01HG8685 ( Brigham and Women's Hospital ); U01HG8672 ( Vanderbilt University Medical Center ); U01HG8666 ( Cincinnati Children's Hospital Medical Center ); U01HG6379 ( Mayo Clinic ); U01HG8679 ( Geisinger Clinic ); U01HG8680 ( Columbia University Health Sciences ); U01HG8684 ( Children's Hospital of Philadelphia ); U01HG8673 ( Northwestern University ); U01HG8701 ( Vanderbilt University Medical Center , serving as the coordinating center); U01HG8676 ( Mass General Brigham and Broad Institute ); and U01HG8664 ( Baylor College of Medicine ). The authors would also like to thank Stephen Schaeffer and the participants of the Epistasis Discovery in Genetics and Epidemiology (EDGE) meeting over the years for their insightful discussion and feedback that has guided this project.
Moore, J.H., The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 2003, 73–82, 10.1159/000073735.
Draghi, J., Phenotypic variability can promote the evolution of adaptive plasticity by reducing the stringency of natural selection. J. Evol. Biol. 32 (2019), 1274–1289, 10.1111/jeb.13527.
Sella, G., Barton, N.H., Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genomics Hum. Genet. 20 (2019), 461–493, 10.1146/annurev-genom-083115.
Mackay, T.F., Moore, J.H., Why epistasis is important for tackling complex human disease genetics. Genome Med., 6, 2014, 124, 10.1186/gm561.
Lehner, B., Modelling genotype-phenotype relationships and human disease with genetic interaction networks. J. Exp. Biol. 210 (2007), 1559–1566, 10.1242/jeb.002311.
Slatkin, M., Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9 (2008), 477–485, 10.1038/nrg2361.
Guryev, V., Smits, B.M.G., van de Belt, J., Verheul, M., Hubner, N., Cuppen, E., Haplotype block structure is conserved across mammals. PLoS Genet. 2 (2006), e121–e1118, 10.1371/journal.pgen.0020121.
Thompson, M.J., Jiggins, C.D., Supergenes and their role in evolution. Heredity 113 (2014), 1–8, 10.1038/hdy.2014.20.
Jeong, H., Baran, N.M., Sun, D., Chatterjee, P., Layman, T.S., Balakrishnan, C.N., Maney, D.L., Yi, S. v, Dynamic molecular evolution of a supergene with suppressed recombination in white-throated sparrows. Elife, 11, 2022, e79387, 10.7554/elife.79387.
Joron, M., Frezal, L., Jones, R.T., Chamberlain, N.L., Lee, S.F., Haag, C.R., Whibley, A., Becuwe, M., Baxter, S.W., Ferguson, L., et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477 (2011), 203–206, 10.1038/nature10341.
Chesmore, K., Bartlett, J., Williams, S.M., The ubiquity of pleiotropy in human disease. Hum. Genet. 137 (2018), 39–44, 10.1007/s00439-017-1854-z.
Tyler, A.L., Asselbergs, F.W., Williams, S.M., Moore, J.H., Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31 (2009), 220–227, 10.1002/bies.200800022.
Ohta, T., Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc. Natl. Acad. Sci. USA 79 (1982), 1940–1944, 10.1073/pnas.79.6.1940.
Ohta, T., Linkage disequilibrium with the island model. Genetics 101 (1982), 139–155, 10.1093/genetics/101.1.139.
Calus, M.P.L., Vandenplas, J., SNPrune: An efficient algorithm to prune large SNP array and sequence datasets based on high linkage disequilibrium. Genet. Sel. Evol., 50, 2018, 34, 10.1186/s12711-018-0404-z.
Mackay, T.F.C., Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat. Rev. Genet. 15 (2014), 22–33, 10.1038/nrg3627.
Hua, B., Springer, M., Widespread cumulative influence of small effect size mutations on yeast quantitative traits. Cell Syst. 7 (2018), 590–600.e6, 10.1016/j.cels.2018.11.004.
Schaeffer, S.W., Miller, E.L., Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics 135 (1993), 541–552, 10.1093/genetics/135.2.541.
Huang, W., Richards, S., Carbone, M.A., Zhu, D., Anholt, R.R.H., Ayroles, J.F., Duncan, L., Jordan, K.W., Lawrence, F., Magwire, M.M., et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc. Natl. Acad. Sci. USA 109 (2012), 15553–15559, 10.1073/pnas.1213423109.
Jacob, F., Evolution and tinkering. Science 196 (1977), 1161–1166, 10.1126/science.860134.
Phillips, P.C., Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9 (2008), 855–867, 10.1038/nrg2452.
Lynch, M., The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl. Acad. Sci. USA 104 (2007), 8597–8604, 10.1073/pnas.8597.
Kulminski, A.M., Culminskaya, I., Yashin, A.I., Inter-chromosomal level of genome organization and longevity-related phenotypes in humans. Age (Dordr) 35 (2013), 501–518, 10.1007/s11357-011-9374-6.
Gandhi, M., Evdokimova, V.N., T Cuenco, K., Nikiforova, M.N., Kelly, L.M., Stringer, J.R., Bakkenist, C.J., Nikiforov, Y.E., Homologous chromosomes make contact at the sites of double-strand breaks in genes in somatic G 0/G 1-phase human cells. Proc. Natl. Acad. Sci. USA 109 (2012), 9454–9459, 10.1073/pnas.1205759109.
Krueger, C., King, M.R., Krueger, F., Branco, M.R., Osborne, C.S., Niakan, K.K., Higgins, M.J., Reik, W., Pairing of homologous regions in the mouse genome is associated with transcription but not imprinting status. PLoS One, 7, 2012, e38983, 10.1371/journal.pone.0038983.
Maass, P.G., Barutcu, A.R., Rinn, J.L., Interchromosomal interactions: A genomic love story of kissing chromosomes. J. Cell Biol. 218 (2019), 27–38, 10.1083/jcb.201806052.
Koch, E., Ristroph, M., Kirkpatrick, M., Long range linkage disequilibrium across the human genome. PLoS One, 8, 2013, e80754, 10.1371/journal.pone.0080754.
McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P., Sharp, K., et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48 (2016), 1279–1283, 10.1038/ng.3643.
Petrowski, P.F., King, E.G., Beissinger, T.M., An R framework for the partitioning of linkage disequilibrium between and within populations. J. Open Res. Softw., 7, 2019, 15, 10.5334/jors.250.
Bush, W.S., Dudek, S.M., Ritchie, M.D., Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac. Symp. Biocomput., 2009, 368–379.
Greene, C.S., Krishnan, A., Wong, A.K., Ricciotti, E., Zelaya, R.A., Himmelstein, D.S., Zhang, R., Hartmann, B.M., Zaslavsky, E., Sealfon, S.C., et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47 (2015), 569–576, 10.1038/ng.3259.
Cacheiro, P., Muñoz-Fuentes, V., Murray, S.A., Dickinson, M.E., Bucan, M., Nutter, L.M.J., Peterson, K.A., Haselimashhadi, H., Flenniken, A.M., Morgan, H., et al. Human and mouse essentiality screens as a resource for disease gene discovery. Nat. Commun., 11, 2020, 655, 10.1038/s41467-020-14284-2.
Ji, X., Kember, R.L., Brown, C.D., Bućan, M., Increased burden of deleterious variants in essential genes in autism spectrum disorder. Proc. Natl. Acad. Sci. USA 113 (2016), 15054–15059, 10.1073/pnas.1613195113.
Boughton, A.P., Welch, R.P., Flickinger, M., VandeHaar, P., Taliun, D., Abecasis, G.R., Boehnke, M., LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37 (2021), 3017–3018, 10.1093/bioinformatics/btab186.
Wei, W.Q., Bastarache, L.A., Carroll, R.J., Marlo, J.E., Osterman, T.J., Gamazon, E.R., Cox, N.J., Roden, D.M., Denny, J.C., Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS One, 12, 2017, e0175508, 10.1371/journal.pone.0175508.
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med., 12, 2015, e1001779, 10.1371/journal.pmed.1001779.
Stanaway, I.B., Hall, T.O., Rosenthal, E.A., Palmer, M., Naranbhai, V., Knevel, R., Namjou-Khales, B., Carroll, R.J., Kiryluk, K., Gordon, A.S., et al. The eMERGE genotype set of 83,717 subjects imputed to ∼40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet. Epidemiol. 43 (2019), 63–81, 10.1002/gepi.22167.
Schüpbach, T., Xenarios, I., Bergmann, S., Kapur, K., FastEpistasis: A high performance computing solution for quantitative trait epistasis. Bioinformatics 26 (2010), 1468–1469, 10.1093/bioinformatics/btq147.
Dolan, M., The role of the Giemsa stain in cytogenetics. Biotech. Histochem. 86 (2011), 94–97, 10.3109/10520295.2010.515493.
Damianov, A., Ying, Y., Lin, C.H., Lee, J.A., Tran, D., Vashisht, A.A., Bahrami-Samani, E., Xing, Y., Martin, K.C., Wohlschlegel, J.A., Black, D.L., Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165 (2016), 606–619, 10.1016/j.cell.2016.03.040.
Li, J., Shinoda, Y., Ogawa, S., Ikegaya, S., Li, S., Matsuyama, Y., Sato, K., Yamagishi, S., Expression of FLRT2 in postnatal central nervous system development and after spinal cord injury. Front. Mol. Neurosci., 14, 2021, 756264, 10.3389/fnmol.2021.756264.
Ong, W.K., Gribble, F.M., Reimann, F., Lynch, M.J., Houslay, M.D., Baillie, G.S., Furman, B.L., Pyne, N.J., The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release. Br. J. Pharmacol. 157 (2009), 633–644, 10.1111/j.1476-5381.2009.00194.x.
Zhao, W.W., Intragenic deletion of RBFOX1 associated with neurodevelopmental/neuropsychiatric disorders and possibly other clinical presentations. Mol. Cytogenet., 6, 2013, 26, 10.1186/1755-8166-6-26.
Wang, Y., Lin, X., Gong, X., Wu, L., Zhang, J., Liu, W., Li, J., Chen, L., Atypical GATA transcription factor TRPS1 represses gene expression by recruiting CHD4/NuRD(MTA2) and suppresses cell migration and invasion by repressing TP63 expression. Oncogenesis, 7, 2018, 96, 10.1038/s41389-018-0108-9.
Choi, Y., Park, H., Kang, S., Jung, H., Kweon, H., Kim, S., Choi, I., Lee, S.Y., Choi, Y.E., Lee, S.H., Kim, E., NGL-1/LRRC4C-mutant mice display hyperactivity and anxiolytic-like behavior associated with widespread suppression of neuronal activity. Front. Mol. Neurosci., 12, 2019, 250, 10.3389/fnmol.2019.00250.
Patsopoulos, N.A., Barcellos, L.F., Hintzen, R.Q., Schaefer, C., van Duijn, C.M., Noble, J.A., Raj, T., Gourraud, P.A., ANZgene. Gourraud, P.A., et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet., 9, 2013, e1003926, 10.1371/journal.pgen.1003926.
Lu, R.-C., Yang, W., Tan, L., Sun, F.-R., Tan, M.-S., Zhang, W., Wang, H.-F., Tan, L., Association of HLA-DRB1 polymorphism with Alzheimer's disease: a replication and meta-analysis. Oncotarget 8 (2017), 93219–93226, 10.18632/oncotarget.21479.
Jiang, Z., Ren, W., Liang, H., Yan, J., Yang, D., Luo, S., Zheng, X., Lin, G.-W., Xian, Y., Xu, W., et al. HLA class I genes modulate disease risk and age at onset together with DR-DQ in Chinese patients with insulin-requiring type 1 diabetes. Diabetologia 64 (2021), 2026–2036, 10.1007/s00125-021-05476-6.
Auckland, K., Mittal, B., Cairns, B.J., Garg, N., Kumar, S., Mentzer, A.J., Kado, J., Perman, M.L., Steer, A.C., Hill, A.V.S., Parks, T., The human leukocyte antigen locus and rheumatic heart disease susceptibility in South Asians and Europeans. Sci. Rep., 10, 2020, 9004, 10.1038/s41598-020-65855-8.
Azad, M.B., Wade, K.H., Timpson, N.J., FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Res., 3, 2018, 65, 10.12688/wellcomeopenres.14636.2.
Santos-Cortez, R.L.P., Chiong, C.M., Frank, D.N., Ryan, A.F., Giese, A.P.J., Bootpetch Roberts, T., Daly, K.A., Steritz, M.J., Szeremeta, W., Pedro, M., et al. FUT2 Variants Confer Susceptibility to Familial Otitis Media. Am. J. Hum. Genet. 103 (2018), 679–690, 10.1016/j.ajhg.2018.09.010.
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43 (2011), 977–983, 10.1038/ng.943.
Grosso, B.J., Kramer, A.A., Tyagi, S., Bennett, D.F., Tifft, C.J., D'Souza, P., Wangler, M.F., Macnamara, E.F., Meza, U., Bannister, R.A., Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder. Sci. Rep., 12, 2022, 9186, 10.1038/s41598-022-12789-y.
Brazzelli, V., Maffioli, P., Bolcato, V., Ciolfi, C., D'Angelo, A., Tinelli, C., Derosa, G., Psoriasis and diabetes, a dangerous association: evaluation of insulin resistance, lipid abnormalities, and cardiovascular risk biomarkers. Front. Med., 8, 2021, 605691, 10.3389/fmed.2021.605691.
Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33 (2005), D514–D517, 10.1093/nar/gki033.
Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L., The human disease network. Proc. Natl. Acad. Sci. USA 104 (2007), 8685–8690, 10.1073/pnas.0701361104.
Juan-Mateu, J., Rech, T.H., Villate, O., Lizarraga-Mollinedo, E., Wendt, A., Turatsinze, J.V., Brondani, L.A., Nardelli, T.R., Nogueira, T.C., Esguerra, J.L.S., et al. Neuron-enriched RNA-binding proteins regulate pancreatic beta cell function and survival. J. Biol. Chem. 292 (2017), 3466–3480, 10.1074/jbc.M116.748335.
Nutter, C.A., Jaworski, E., Verma, S.K., Perez-Carrasco, Y., Kuyumcu-Martinez, M.N., Developmentally regulated alternative splicing is perturbed in type 1 diabetic skeletal muscle. Muscle Nerve 56 (2017), 744–749, 10.1002/mus.25599.
Arntfield, M.E., van der Kooy, D., β-Cell evolution: How the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. Bioessays 33 (2011), 582–587, 10.1002/bies.201100015.
Wei, K., Xu, Y., Tse, H., Manolson, M.F., Gong, S.G., Mouse FLRT2 interacts with the extracellular and intracellular regions of FGFR2. J. Dent. Res. 90 (2011), 1234–1239, 10.1177/0022034511415272.
Schafer, P.H., Truzzi, F., Parton, A., Wu, L., Kosek, J., Zhang, L.H., Horan, G., Saltari, A., Quadri, M., Lotti, R., et al. Phosphodiesterase 4 in inflammatory diseases: Effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell. Signal. 28 (2016), 753–763, 10.1016/j.cellsig.2016.01.007.
Chen, Y., Li, Z., Li, H., Su, W., Xie, Y., Pan, Y., Chen, X., Liang, D., Apremilast Regulates the Teff/Treg Balance to Ameliorate Uveitis via PI3K/AKT/FoxO1 Signaling Pathway. Front. Immunol., 11, 2020, 581673, 10.3389/fimmu.2020.581673.
Schett, G., Sloan, V.S., Stevens, R.M., Schafer, P., Apremilast: A novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther. Adv. Musculoskelet. Dis. 2 (2010), 271–278, 10.1177/1759720X10381432.
Afra, T.P., Razmi, T.M., Dogra, S., Apremilast in Psoriasis and Beyond: Big Hopes on a Small Molecule. Indian Dermatol. Online J. 10 (2019), 1–12, 10.4103/idoj.IDOJ_437_18.
Akita, T., Kumada, T., Yoshihara, S.i., Egea, J., Yamagishi, S., Ion channels, guidance molecules, intracellular signaling and transcription factors regulating nervous and vascular system development. J. Physiol. Sci. 66 (2016), 175–188, 10.1007/s12576-015-0416-1.
Camillo, C., Facchinello, N., Villari, G., Mana, G., Gioelli, N., Sandri, C., Astone, M., Tortarolo, D., Clapero, F., Gays, D., et al. LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. J. Cell Biol., 220, 2021, e202006033, 10.1083/jcb.202006033.
Shirai, T., Fujii, H., Ono, M., Nakamura, K., Watanabe, R., Tajima, Y., Takasawa, N., Ishii, T., Harigae, H., A novel autoantibody against fibronectin leucine-rich transmembrane protein 2 expressed on the endothelial cell surface identified by retroviral vector system in systemic lupus erythematosus. Arthritis Res. Ther., 14, 2012, R157, 10.1186/ar3897.
Orbán, C., Biró, E., Grozdics, E., Bajnok, A., Toldi, G., Modulation of T lymphocyte calcium influx patterns via the inhibition of Kv1.3 and IKCa1 potassium channels in autoimmune disorders. Front. Immunol., 4, 2013, 234, 10.3389/fimmu.2013.00234.
Waxman, S.G., Ion channels and neuronal dysfunction in multiple sclerosis. Arch. Neurol. 59 (2002), 1377–1380, 10.1001/archneur.59.9.1377.
Blumenfeld Kan, S., Staun-Ram, E., Golan, D., Miller, A., HDL-cholesterol elevation associated with fingolimod and dimethyl fumarate therapies in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin., 5, 2019, 10.1177/2055217319882720 2055217319882720.
Liu, N., Guo, Y.-N., Wang, X.-J., Ma, J., He, Y.-T., Zhang, F., He, H., Xie, J.-L., Zhuang, X., Liu, M., et al. Copy number analyses identified a novel gene: APOBEC3A related to lipid metabolism in the pathogenesis of preeclampsia. Front. Cardiovasc. Med., 9, 2022, 841249, 10.3389/fcvm.2022.841249.
Yang, K., Meinhardt, A., Zhang, B., Grzmil, P., Adham, I.M., Hoyer-Fender, S., The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol. Cell Biol. 32 (2012), 216–225, 10.1128/MCB.06158-11.
Glazer, C.H., Tøttenborg, S.S., Giwercman, A., Bräuner, E.V., Eisenberg, M.L., Vassard, D., Magyari, M., Pinborg, A., Schmidt, L., Bonde, J.P., Male factor infertility and risk of multiple sclerosis: A register-based cohort study. Mult. Scler. 24 (2018), 1835–1842, 10.1177/1352458517734069.
Taylor, A., Namba, K., In vitro induction of CD25+ CD4+ regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH). Immunol. Cell Biol. 79 (2001), 358–367, 10.1046/j.1440-1711.2001.01022.x.
Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J.G., Zgaga, L., Manolio, T., Rudan, I., McKeigue, P., Wilson, J.F., Campbell, H., Abundant pleiotropy in human complex diseases and traits. Am. J. Hum. Genet. 89 (2011), 607–618, 10.1016/j.ajhg.2011.10.004.
Paaby, A.B., Rockman, M. v, The many faces of pleiotropy. Trends Genet. 29 (2013), 66–73, 10.1016/j.tig.2012.10.010.
Moreno-Grau, S., Hernández, I., Heilmann-Heimbach, S., Ruiz, S., Rosende-Roca, M., Mauleón, A., Vargas, L., Rodríguez-Gómez, O., Alegret, M., Espinosa, A., et al. Genome-wide significant risk factors on chromosome 19 and the APOE locus. Oncotarget 9 (2018), 24590–24600, 10.18632/oncotarget.25083.
Lu, Y., Yue, D., Xie, J., Cheng, L., Wang, X., Ontology specific alternative splicing changes in Alzheimer's disease. Front. Genet., 13, 2022, 926049, 10.3389/fgene.2022.926049.
Mailleux, J., Timmermans, S., Nelissen, K., Vanmol, J., Vanmierlo, T., van Horssen, J., Bogie, J.F.J., Hendriks, J.J.A., Low-density lipoprotein receptor deficiency attenuates neuroinflammation through the induction of apolipoprotein E. Front. Immunol., 8, 2017, 1701, 10.3389/fimmu.2017.01701.
Gopalraj, R.K., Zhu, H., Kelly, J.F., Mendiondo, M., Pulliam, J.F., Bennett, D.A., Estus, S., Genetic association of low density lipoprotein receptor and Alzheimer's disease. Neurobiol. Aging 26 (2005), 1–7, 10.1016/j.neurobiolaging.2004.09.001.
Schepici, G., Silvestro, S., Bramanti, P., Mazzon, E., The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transplant. 28 (2019), 1507–1527, 10.1177/0963689719873890.
Najafi, M.R., Shaygannajad, V., Mirpourian, M., Gholamrezaei, A., Vitamin B(12) deficiency and multiple sclerosis; is there any association?. Int. J. Prev. Med. 3 (2012), 286–289.
Smyth, D.J., Cooper, J.D., Howson, J.M.M., Clarke, P., Downes, K., Mistry, T., Stevens, H., Walker, N.M., Todd, J.A., FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60 (2011), 3081–3084, 10.2337/db11-0638.
Ellinghaus, D., Ellinghaus, E., Nair, R.P., Stuart, P.E., Esko, T., Metspalu, A., Debrus, S., Raelson, J. v, Tejasvi, T., Belouchi, M., et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90 (2012), 636–647, 10.1016/j.ajhg.2012.02.020.
Hazra, A., Kraft, P., Selhub, J., Giovannucci, E.L., Thomas, G., Hoover, R.N., Chanock, S.J., Hunter, D.J., Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40 (2008), 1160–1162, 10.1038/ng.210.
Podbielska, M., O'Keeffe, J., Pokryszko-Dragan, A., New insights into multiple sclerosis mechanisms: lipids on the track to control inflammation and neurodegeneration. Int. J. Mol. Sci., 22, 2021, 7319, 10.3390/ijms22147319.
Tsyklauri, O., Niederlova, V., Forsythe, E., Prasai, A., Drobek, A., Kasparek, P., Sparks, K., Trachtulec, Z., Prochazka, J., Sedlacek, R., et al. Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance. EMBO Rep., 22, 2021, e50785, 10.15252/embr.202050785.
Mar, S., Noetzel, M., Axonal damage in leukodystrophies. Pediatr. Neurol. 42 (2010), 239–242, 10.1016/j.pediatrneurol.2009.08.011.
Gouras, P., Carr, R.E., Gunkel, R.D., Retinitis pigmentosa in abetalipoproteinemia: Effects of vitamin A. Invest. Ophthalmol. 10 (1971), 784–793.
Fu, Z., Chen, C.T., Cagnone, G., Heckel, E., Sun, Y., Cakir, B., Tomita, Y., Huang, S., Li, Q., Britton, W., et al. Dyslipidemia in retinal metabolic disorders. EMBO Mol. Med., 11, 2019, e10473, 10.15252/emmm.201910473.
Damaj, L., Lupien-Meilleur, A., Lortie, A., Riou, É., Ospina, L.H., Gagnon, L., Vanasse, C., Rossignol, E., CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 23 (2015), 1505–1512, 10.1038/ejhg.2015.21.
Wu, H., Sun, L., Lin, D.-P., Shao, X.-X., Xia, S.-L., Lv, M., Association of fucosyltransferase 2 gene polymorphisms with inflammatory bowel disease in patients from Southeast China. Gastroenterol. Res. Pract., 2017, 2017, 4148651, 10.1155/2017/4148651.
Park, L., Population-specific long-range linkage disequilibrium in the human genome and its influence on identifying common disease variants. Sci. Rep., 9, 2019, 11380, 10.1038/s41598-019-47832-y.
Seitz, C.S., Lü, H.-J., Wagner, N., Bröcker, E.-B., Hamm, H., Trichorhinophalangeal Syndrome Type I Clinical and Molecular Characterization of 3 Members of a Family and 1 Sporadic Case. Arch. Dermatol. 137 (2001), 1437–1442, 10.1001/archderm.137.11.1437.