[en] Individual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network. This paper proposes novel edge and module significance assessment procedures for weighted and unweighted individual-specific networks. Specifically, we propose a modular Cook's distance using a method that involves iterative modeling of one edge versus all the others within a module. Two procedures assessing changes between using all individuals and using all individuals but leaving one individual out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, by an extensive simulation study, templated on real-life scenarios for gene co-expression and microbial interaction networks. Results show the advantages of performing modular versus edge-wise significance assessments for individual-specific networks. Furthermore, modular Cook's distance is among the top performers across all considered simulation settings. Finally, the identification of outlying individuals regarding their individual-specific networks, is meaningful for precision medicine purposes, as confirmed by network analysis of microbiome abundance profiles.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Melograna, Federico; BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium. federico.melograna@kuleuven.be
Li, Zuqi; BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
Galazzo, Gianluca; School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
van Best, Niels; Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany ; Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
Mommers, Monique; Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
Penders, John; School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands ; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
Stella, Fabio; Department of Informatics, Systems and Communication, University of Milano-Bicocca, 20126, Milan, Italy
Van Steen, Kristel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Bioinformatique ; BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
Language :
English
Title :
Edge and modular significance assessment in individual-specific networks.
This study was embedded within the Euregional Microbiome Center ( www.microbiomecenter.eu ), a cross-border initiative on host-microbiome interactions between the University of Liège, Maastricht University, Maastricht University Medical Center+ and Uniklinik RWTH Aachen. Funding was received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements N° 813533 (mlfpm.eu) and N° 860895 (h2020transys.eu). Many thanks to Diane Duroux from the BIO3 lab at the University of Liège (Belgium) for inspiring discussions on ISNs and to Alice Giampino of University of Milan-Bicocca for discussions and clarifications on Dirichlet sampling.This study was embedded within the Euregional Microbiome Center (www.microbiomecenter.eu), a cross-border initiative on host-microbiome interactions between the University of Liège, Maastricht University, Maastricht University Medical Center+ and Uniklinik RWTH Aachen. Funding was received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements N° 813533 (mlfpm.eu) and N° 860895 (h2020transys.eu). Many thanks to Diane Duroux from the BIO3 lab at the University of Liège (Belgium) for inspiring discussions on ISNs and to Alice Giampino of University of Milan-Bicocca for discussions and clarifications on Dirichlet sampling.
Ozturk, K., Dow, M., Carlin, D., Bejar, R. & Carter, H. The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol. 430, 2875–2899. 10.1016/j.jmb.2018.06.016 (2018). DOI: 10.1016/j.jmb.2018.06.016
Barabási, A., Gulbahce, N. & Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 12, 56–68. 10.1038/nrg2918 (2010). DOI: 10.1038/nrg2918
Sonawane, A., Weiss, S., Glass, K. & Sharma, A. Network medicine in the age of biomedical big data. Front. Genet. 10, 294. 10.3389/FGENE.2019.00294 (2019). DOI: 10.3389/FGENE.2019.00294
Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 11, 1–12. 10.1038/s41467-020-17840-y (2020). DOI: 10.1038/s41467-020-17840-y
Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S. & Moore, J. H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 85, 189–203. 10.1016/j.jbi.2018.07.014 (2018). DOI: 10.1016/j.jbi.2018.07.014
Duroux, D., Climente-González, H., Azencott, C.-A. & Van Steen, K. Interpretable network-guided epistasis detection. GigaScience 10.1093/gigascience/giab093 (2022). DOI: 10.1093/gigascience/giab093
Menche, J. et al. Integrating personalized gene expression profiles into predictive disease-associated gene pools. NPJ Syst. Biol. Appl. 10.1038/s41540-017-0009-0 (2017). DOI: 10.1038/s41540-017-0009-0
Kosorok, M. & Laber, E. Precision medicine. Annu. Rev. Stat. Appl. 6, 263–286. 10.1146/annurev-statistics-030718-105251 (2019). DOI: 10.1146/annurev-statistics-030718-105251
Bzdok, D., Varoquaux, G., Prediction, S. E. & Association, N. Paves the road to precision medicine. JAMA Psychiatry 78(2), 127–128. 10.1001/jamapsychiatry.2020.2549 (2021). DOI: 10.1001/jamapsychiatry.2020.2549
Moore, J. & Williams, S. Traversing the conceptual divide between biological and statistical epistasis: Systems biology and a more modern synthesis. Bioessays 27(6), 637–46. 10.1002/bies.20236 (2005). DOI: 10.1002/bies.20236
Liu, W. et al. Efficient gaussian sample specific network marker discovery and drug enrichment analysis validation. Comput. Biol. Chem. 10.1016/j.compbiolchem.2019.107139 (2019). DOI: 10.1016/j.compbiolchem.2019.107139
Huang, Y., Chang, X., Zhang, Y., Chen, L. & Liu, X. Disease characterization using a partial correlation-based sample-specific network. Brief. Bioinform. 10.1093/bib/bbaa062 (2020). DOI: 10.1093/bib/bbaa062
Kuijjer, M., Tung, M., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. Science 10.1016/j.isci.2019.03.021 (2019). DOI: 10.1016/j.isci.2019.03.021
Dai, H., Li, L., Zeng, T. & Chen, L. Cell-specific network constructed by single-cell rna sequencing data. Nucleic Acids Res. 10.1093/nar/gkz172 (2019). DOI: 10.1093/nar/gkz172
Li, L., Dai, H., Fang, Z. & Chen, L. c-csn: Single-cell rna sequencing data analysis by conditional cell-specific network. Genom. Proteom. Bioinform. 10.1016/J.GPB.2020.05.005 (2021). DOI: 10.1016/J.GPB.2020.05.005
Flashner-Abramson, E., Vasudevan, S., Adejumobi, I., Sonnenblick, A. & Kravchenko-Balasha, N. Decoding cancer heterogeneity: Studying patient-specific signaling signatures towards personalized cancer therapy. Theranostics 9, 5149–5165. 10.7150/thno.31657 (2019). DOI: 10.7150/thno.31657
Guo, W.-F., Zhang, S.-W., Zeng, T., Akutsu, T. & Chen, L. Network control principles for identifying personalized driver genes in cancer. Brief. Bioinform. 21, 1641–1662. 10.1093/bib/bbz089 (2019). DOI: 10.1093/bib/bbz089
Bian, J., Xie, M., Topaloglu, U. & Cisler, J. M. A probabilistic model of functional brain connectivity network for discovering novel biomarkers. AMIA Summits Transl. Sci. Proc. 2013, 21 (2013).
Doucet, G. et al. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy. Epilepsia 56(4), 517–26. 10.1111/epi.12936 (2015). DOI: 10.1111/epi.12936
Gosak, M. et al. Network science of biological systems at different scales: A review. Phys. Life Rev. 10.1016/j.plrev.2017.11.003 (2018). DOI: 10.1016/j.plrev.2017.11.003
Liu, X., Wang, Y., Ji, H., Aihara, K. & Chen, L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 44, 772. 10.1093/nar/gkw772 (2016). DOI: 10.1093/nar/gkw772
Maron, B. et al. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat. Commun. 10.1038/s41467-021-21146-y (2021). DOI: 10.1038/s41467-021-21146-y
Ha, M. et al. Personalized integrated network modeling of the cancer proteome atlas. Sci. Rep. 10.1038/s41598-018-32682-x (2018). DOI: 10.1038/s41598-018-32682-x
Gregorich, M. et al. Subject-specific networks as features for predictive modelling: A scoping review of methods. Sci. Rep. 10.13140/RG.2.2.24616.499 (2021). DOI: 10.13140/RG.2.2.24616.499
Elo, L. L. & Schwikowski, B. Analysis of time-resolved gene expression measurements across individuals. PLOS ONE 8, 1–8. 10.1371/journal.pone.0082340 (2013). DOI: 10.1371/journal.pone.0082340
Yu, X. et al. Individual-specific edge-network analysis for disease prediction. Nucleic Acids Res. 45, 787. 10.1093/nar/gkx787 (2017). DOI: 10.1093/nar/gkx787
Jahagirdar, S. & Saccenti, E. Evaluation of single sample network inference methods for metabolomics-based systems medicine. J. Proteome Res. 20, 932–949. 10.1021/acs.jproteome.0c00696 (2021). DOI: 10.1021/acs.jproteome.0c00696
Korte-de Boer, D. et al. Lucki birth cohort study, rationale and design. BMC Public Health 15, 1–7. 10.1186/S12889-015-2255-7 (2015). DOI: 10.1186/S12889-015-2255-7
Tripathi, S., Moutari, S., Dehmer, M. & Emmert-Streib, F. Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules. BMC Bioinform. 10.1186/s12859-016-0979-8 (2016). DOI: 10.1186/s12859-016-0979-8
Sugiyama, M. & Borgwardt, K. Rapid distance-based outlier detection via sampling. Adv. Neural Inf. Process. Syst. 26, 1–10 (2013).
Angiulli, F. & Pizzuti, C. Fast outlier detection in high dimensional spaces. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2431 LNAI, 15–27, https://doi.org/10.1007/3-540-45681-3_2 (2002).
Ankerst, M., Breunig, M. M., Kriegel, H. P. & Sander, J. Optics: Ordering points to identify the clustering structure. SIGMOD Rec. 28, 49–60. 10.1145/304181.304187 (1999). DOI: 10.1145/304181.304187
Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8, 1002606. 10.1371/JOURNAL.PCBI.1002606 (2012). DOI: 10.1371/JOURNAL.PCBI.1002606
Li, X., Wang, X. & Xiao, G. A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications. Brief. Bioinform. 20, 178–189. 10.1093/bib/bbx101 (2017). DOI: 10.1093/bib/bbx101
O’bray, L., Rieck, B. & Borgwardt, K. Filtration curves for graph representation; filtration curves for graph representation. Brief. Bioinform. 10.1145/3447548.3467442 (2021). DOI: 10.1145/3447548.3467442
Fiedler, M. Algebraic connectivity of graphs. Czech. Math. J. 23, 298–305 (1973). DOI: 10.21136/CMJ.1973.101168
de Abreu, N. M. M. Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423, 53–73. 10.1016/j.laa.2006.08.017 (2007). DOI: 10.1016/j.laa.2006.08.017
Galazzo, G. et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology 158, 1584–1596. 10.1053/j.gastro.2020.01.024 (2020). DOI: 10.1053/j.gastro.2020.01.024
Jahagirdar, S. & Saccenti, E. On the use of correlation and mi as a measure of metabolite-metabolite association for network differential connectivity analysis. Metabolites 10.3390/metabo10040171 (2020). DOI: 10.3390/metabo10040171
Conesa, A., Madrigal, P. & Tarazona, S. A survey of best practices for rna-seq data analysis. Genome Biol. 17, 13. 10.1186/s13059-016-0881-8 (2016). DOI: 10.1186/s13059-016-0881-8
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, 1–12. 10.1186/gb-2010-11-10-r106 (2010). DOI: 10.1186/gb-2010-11-10-r106
Robinson, M. D. & Smyth, G. K. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881–2887. 10.1093/bioinformatics/btm453 (2007). DOI: 10.1093/bioinformatics/btm453
Walker, W. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediat. Res. 10.1038/pr.2017.111 (2017). DOI: 10.1038/pr.2017.111
Smiti, A. A critical overview of outlier detection methods. Comput. Sci. Rev. 38, 100306. 10.1016/j.cosrev.2020.100306 (2020). DOI: 10.1016/j.cosrev.2020.100306
Wang, H., Bah, M. & Hammad, M. Progress in outlier detection techniques: A survey. IEEE Access 7, 107964–108000. 10.1109/access.2019.2932769 (2019). DOI: 10.1109/access.2019.2932769
Duroux, D. & Steen, K. netanova: Novel graph clustering technique with significance assessment via hierarchical Anova. BioRxiv 10.1101/2022.06.28.497741 (2022). DOI: 10.1101/2022.06.28.497741
Yu, X., Chen, X. & Wang, Z. Characterizing the personalized microbiota dynamics for disease classification by individual-specific edge-network analysis. Front. Genet. 10.3389/fgene.2019.00283 (2019). DOI: 10.3389/fgene.2019.00283
Reyman, M., Houten, M. & Baarle, D. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 10, 4997. 10.1038/s41467-019-13014-7 (2019). DOI: 10.1038/s41467-019-13014-7
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975. 10.1073/pnas.1002601107 (2010). DOI: 10.1073/pnas.1002601107
Sevelsted, A., Stokholm, J., Bønnelykke, K. & Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics 135, e92–e98. 10.1542/peds.2014-0596 (2015). DOI: 10.1542/peds.2014-0596
Mueller, N. T. et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int. J. Obes. 2005(39), 665–670. 10.1038/ijo.2014.180 (2015). DOI: 10.1038/ijo.2014.180
Stearns, J. C. et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 9, 1246–1259. 10.1038/ismej.2014.250 (2015). DOI: 10.1038/ismej.2014.250
Nearing, J., Douglas, G. & Hayes, M. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342. 10.1038/s41467-022-28034-z (2022). DOI: 10.1038/s41467-022-28034-z
Guo, W., Yu, X., Shi, Q., Liang, J. & Zhang, S. Performance assessment of sample-specific network control methods for bulk and single-cell biological data analysis. PLOS Comput. Biol. 17, 1008962. 10.1371/journal.pcbi.1008962 (2021). DOI: 10.1371/journal.pcbi.1008962
Kuijjer, M., Hsieh, P. & Quackenbush, J. lionessr: Single sample network inference in r. BMC Cancer 19, 1003. 10.1186/s12885-019-6235-7 (2019). DOI: 10.1186/s12885-019-6235-7
Surowiecki, J. The Wisdom of Crowds (Anchor, 2005).
Harrison, J. G., Calder, W. J., Shastry, V. & Buerkle, C. A. Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data. Sci. Rep. 10.1101/711317 (2019). DOI: 10.1101/711317
Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986). DOI: 10.1007/978-94-009-4109-0