[en] Cs2AgBiBr6 double perovskite compounds have been increasingly studied in recent years as promising candidates able to counter polluting, harmful and oxygen/moisture sensitive issues intrinsic to traditional lead-containing solar cells. Exhibiting high optical absorption coefficient, low toxicity and important structural stability, Cs2AgBiBr6 solar cells still suffer from limited absorption of low energy photons, low carrier mobility, and limited carrier lifetimes induced by defect states. Herein, for the first time, a molecular layer of tetracene has been introduced within a Cs2AgBiBr6-based photovoltaic architecture: being incorporated at the interface between the double perovskite photoabsorber and Spiro-OMeTAD hole transport material, tetracene allows for a suitably graded cascade of energy bands within the solar cell architecture, which ultimately improves interfacial charge transfers and reduces charge recombinations. The performances in photovoltaic devices are consequently enhanced vs. tetracene-free configurations, with champion values of open circuit voltages of 1.1 V (vs. 1.0 V), current densities of 2.5 mA/cm² (vs. 1.9 mA/cm²) and photoconversion efficiencies of 1.7% (vs. 1.3%) with reduced hysteretic behavior.
Disciplines :
Chemistry
Author, co-author :
Daem, Nathan ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Dewalque, Jennifer ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Kim, Dong Kuk; Imperial College London [GB] > Department of Materials
Spronck, Gilles ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Attwood, Max; Imperial College London [GB] > Department of Materials
Wade, Jessica; Imperial College London [GB] > Department of Materials
Henrist, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Colson, Pierre ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Heutz, Sandrine; Imperial College London [GB] > Department of Materials
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT)
Maho, Anthony ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Université de Bordeaux [FR] > ICMCB
Language :
English
Title :
Improved photovoltaic performances of lead-free Cs2AgBiBr6 perovskite solar cells incorporating tetracene as co-hole transport layer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: February 2023).
D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, J. Nanomater. 2018, 2018, 1.
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
R. Nie, R. R. Sumukam, S. H. Reddy, M. Banavoth, S. I. Seok, Energy Environ. Sci. 2020, 30, 2363.
L. Liu, J. Lu, H. Wang, Z. Cui, G. Giorgi, Y. Bai, Q. Chen, Mater. Rep.: Energy 2021, 1, 100064.
L. Song, Mater. Rep.: Energy 2022, 2, 100171.
G. Schileo, G. Grancini, J. Mater. Chem. C 2021, 9, 67.
H. Xiang, P. Liu, R. Ran, W. Wang, W. Zhou, Z. Shao, Renewable Sustainable Energy Rev. 2022, 166, 112614.
F. Igbari, Z. K. Wang, L. S. Liao, Adv. Energy Mater. 2019, 9, 1.
M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, H. J. Snaith, ACS Energy Lett. 2017, 2, 2506.
Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 31, 1803792.
Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, H. Lin, Sci. Technol. Adv. Mater. 2018, 6996, 1.
Z. Xiao, Y. Yan, Adv. Energy Mater. 2017, 7, 1.
A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138.
N. Daem, J. Dewalque, F. Lang, A. Maho, G. Spronck, C. Henrist, P. Colson, S. D. Stranks, R. Cloots, Sol. RRL 2021, 5, 2100422.
F. H. Alharbi, S. Kais, Renewable Sustainable Energy Rev. 2015, 43, 1073.
C. N. Savory, A. Walsh, D. O. Scanlon, ACS Energy Lett. 2016, 1, 949.
Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu, S. H. Wei, M. Sui, Nat. Commun. 2022, 13, 1.
X. Yang, H. Xiang, C. Zhou, R. Ran, W. Wang, W. Zhou, Z. Shao, J. Colloid Interface Sci. 2022, 628, 476.
Y. Yu, J. Xia, Y. Liang, AIP Adv. 2022, 12, 055307.
E. Greul, M. L. Petrus, A. Binek, P. Docampo, T. Bein, J. Mater. Chem. A 2017, 5, 19972.
X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, Adv. Funct. Mater. 2020, 30, 1.
D. Zhao, C. Liang, B. Wang, T. Liu, Q. Wei, K. Wang, H. Gu, S. Wang, S. Mei, G. Xing, Energy Environ. Mater. 2022, 5, 1317.
S. Miao, S. Yuan, D. Zhu, Q. Cai, H. Y. Wang, Y. Wang, Y. Qin, X. C. Ai, Phys. Chem. Chem. Phys. 2022, 24, 20689.
X. Yang, A. Xie, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, Appl. Phys. Rev. 2021, 8, 1ENG.
M. Abdi-Jalebi, M. I. Dar, S. P. Senanayak, A. Sadhanala, Z. Andaji-Garmaroudi, L. M. Pazos-Outón, J. M. Richter, A. J. Pearson, H. Sirringhaus, M. Grätzel, R. H. Friend, Sci. Adv. 2019, 5, 1.
S. Kazim, F. J. Ramos, P. Gao, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Energy Environ. Sci. 2015, 8, 1816.
K. Wang, Y. Huang, R. Chen, Z. Xu, Appl. Surf. Sci. 2016, 388, 376.
H. S. Kim, J. H. Park, W. H. Lee, H. H. Kim, Y. D. Park, Soft Matter 2019, 15, 7369.
D. A. Kadri, D. A. Karim, M. Seck, K. Diouma, P. Marcel, Mater. Sci. Appl. 2018, 09, 900.
A. R. Bowman, S. D. Stranks, B. Monserrat, Chem. Mater. 2022, 34, 4865.
M. Attwood, D. K. Kim, J. H. L. Hadden, A. Maho, W. Ng, H. Wu, H. Akutsu, A. J. P. White, S. Heutz, M. Oxborrow, J. Mater. Chem. C 2021, 9, 17073.
D. K. Kim, D. Lubert-Perquel, S. Heutz, Mater. Horiz. 2020, 7, 289.
S. B. Jo, H. H. Kim, H. Lee, B. Kang, S. Lee, M. Sim, M. Kim, W. H. Lee, K. Cho, ACS Nano 2015, 9, 8206.
A. Krishna, D. Sabba, J. Yin, A. Bruno, L. J. Antila, C. Soci, S. Mhaisalkar, A. C. Grimsdale, J. Mater. Chem. A 2016, 4, 8750.
W. Zhang, L. Wang, Y. Guo, B. Zhang, V. Leandri, B. Xu, Z. Li, J. M. Gardner, L. Sun, L. Kloo, Chem. Commun. 2020, 56, 1589.
G. Longo, S. Mahesh, L. R. V. Buizza, A. D. Wright, A. J. Ramadan, M. Abdi-Jalebi, P. K. Nayak, L. M. Herz, H. J. Snaith, ACS Energy Lett. 2020, 5, 2200.
E. Von Hauff, D. Klotz, J. Mater. Chem. C 2022, 10, 742.
T. Kirchartz, Philos. Trans. R. Soc., A 2019, 377, 20180286.
X. Yang, W. Wang, R. Ran, W. Zhou, Z. Shao, Energy Fuels 2020, 34, 10513.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.