Article (Scientific journals)
On the robustness of machine-learnt proxies for security constrained optimal power flow solvers
Popli, Nipun; Davoodi, Elnaz; Capitanescu, Florin et al.
2024In Sustainable Energy, Grids and Networks, 37, p. 101265
Peer Reviewed verified by ORBi
 

Files


Full Text
Robust-ML4SCOPF.pdf
Author preprint (2.16 MB)
Download
Full Text Parts
Robust-ML4SCOPF-accepted.pdf
Author postprint (1.63 MB)
Download
1-s2.0-S2352467723002734-main.pdf
Publisher postprint (1.71 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
artificial intelligence; machine learning; deep neural networks; random forests; security constrained optimal power flow; reproducibiliy; proxies; robustness
Abstract :
[en] In this paper, we focus on the robustness of machine learning based proxies used to speed up, alone or jointly with state-of-the-art mathematical optimization methods, optimal power flow and security-constrained optimal power flow calculations. On data sets for the Nordic32 alternative current security-constrained optimal power flow benchmark, we evaluate the robustness of proxies with respect to load distribution, power factors, on-line generators and network topology, and generator costs. We show that simplified random load sampling procedures that are used in most published academic studies, are insufficient to yield robust machine learnt proxies, and consequently limit their usefulness in the real world. Based on these results, we formulate recommendations for future research.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Popli, Nipun ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Davoodi, Elnaz;  LIST - Luxembourg Institute of Science and Technology [LU] > ERIN
Capitanescu, Florin;  LIST - Luxembourg Institute of Science and Technology [LU] > ERIN
Wehenkel, Louis  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Language :
English
Title :
On the robustness of machine-learnt proxies for security constrained optimal power flow solvers
Publication date :
28 December 2024
Journal title :
Sustainable Energy, Grids and Networks
ISSN :
2352-4677
Publisher :
Elsevier, United Kingdom
Volume :
37
Pages :
101265
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
ML4SCOPF
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
T.0258.20; 2.5020.11
Available on ORBi :
since 24 June 2023

Statistics


Number of views
194 (31 by ULiège)
Number of downloads
222 (17 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi