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On the robustness of machine-learnt proxies for
security constrained optimal power flow solvers

Nipun Popli⋆ Elnaz Davoodi† Florin Capitanescu† Louis Wehenkel⋆

Abstract—In this paper, we revisit the robustness of machine
learning based proxies used to speed up, alone or jointly
with state-of-the-art mathematical optimization methods, opti-
mal power flow and security-constrained optimal power flow
calculations. On data sets for the NORDIC32 alternative current
security-constrained optimal power flow benchmark, we evaluate
the robustness of proxies with respect to load distribution, power
factors, on-line generators and network topology, and generator
costs. We show that simplified random load sampling procedures
that are used in most published academic studies, are insufficient
to yield robust machine learnt proxies, and consequently limit
their usefulness in the real world. Based on these results, we
formulate recommendations for future research.

Index Terms—artificial intelligence, machine learning, deep
neural networks, random forests, security-constrained optimal
power flow, reproducibility, proxies, robustness.

I. INTRODUCTION

The optimal power flow (OPF) and the security-constrained
optimal power flow (SCOPF), or the problems of computing
a low-cost and secure operating state for an electric grid,
are a widely investigated research area [1]. When using an
alternative current (AC) physical model of the grid, OPF and
more so SCOPF are high-dimensional optimization problems
inherent with non-linearity and non-convexity. The so-called
direct current (DC) versions, DC-OPF and DC-SCOPF, are
based on a linearized physical model. These greatly reduce
the computational complexity, but, at the expense of often
unacceptable approximations.

The increasing need for repeated SCOPF calculations to
compute a sequence of optimal and secure network states is
an inevitable consequence of a more and more dynamical
grid. The frequency and number of computations will be
exacerbated by the following critical factors:

● Variability and uncertainty of net demand: proliferation of
hard-to-control renewable generation powered by stochas-
tic weather conditions, and with price-driven end-use
consumptions.

● Exogenous market disturbances: coupling with external
energy networks, for instance susceptibility of generator’s
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production cost models to volatility in spot, day-ahead,
or forward fuel prices (e.g. gas prices in 2022).

● Variable system topology: planned or unintended grid
and generation outages, variable market-driven intra-
day/hourly generation portfolios, and hence variable grid
capacities and control resources.

In order to make these heavy computations more tractable,
artificial intelligence (AI) and in particular various flavours of
machine learning (ML) approaches are currently intensively
investigated by the academic research community [2]–[17].
These researches propose methods to build proxies which can
advantageously replace or complement analytical techniques
based on classical non-linear and/or linear programming ap-
plied to physical power system (PS) models. The hope is
to significantly speed-up the computations, to increase the
reliability of the solution process, and to eventually tackle
in a practical way mixed-integer-non-linear preventive and
corrective SCOPF calculations both in real-time operation and
in planning studies of real large-scale power systems.

In a nutshell, the machine learning approach consists in
generating a training sample of solved (SC)OPF problems for
a given grid. The training sample is used to build (via machine
learning) a ‘proxy’ (for instance a deep neural network, or a
random forest). The proxy receives as input a description of the
problem instance. Then it computes as output quantities that
can be used in place of, or, in complement with the analytical
solver in order to speed up the problem resolution. To evaluate
the accuracy of the learnt proxy an independent test sample
must be used, on which the machine learning based solver
is ‘statistically’ compared with the analytical solvers in terms
of accuracy and computing times. The lessons that can be
learnt from such studies obviously depend on the ranges and
on the dimensions of variability covered by the training and
test sample generation procedures.

The main original contribution of this paper is to identify,
and raise awareness and support it quantitatively, of the most
relevant dimensions that should be covered when generating
training and test samples for such studies. As it is shown in
Table I, these dimensions are indeed missing from the machine
learning approaches proposed so far. The lack of attention
accorded to these dimensions is a major drawback of state-of-
the-art techniques, and, a huge barrier to the potential adoption
of machine-learnt proxies in real-world applications.

We identify the various dimensions that should always be
considered to safely assess machine learning based proxies.
We show how the choice of a too small subset of these
dimensions when training and evaluating machine learning
based proxies may lead to overly optimistic conclusions in
terms of accuracy. Our investigation is based on an AC-SCOPF
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TABLE I: Our study scope with respect to the literature of papers on ML based (DC/AC)-(SC)(O)PF proxies

Bib. Targeted solvers Pb. PS models ML algorithms Variable dimensions considered to train and/or test the ML proxies
Ref. PF OPF SCOPF Size DC AC DNN RF Ld distr. Ld pow. fact. Gen. outages Line outages Gen. Cost
[2] X 4M X X X
[3] X 7K X X X
[4] X 100K X X X
[5] X 300 X X X
[6] X 600 X X X
[7] X 2K X X X
[8] X 4K X X X X
[9] X 6K X X X X

[10] X 600 X X X
[11] X 2K X X X
[12] X 6K X X X X X
[13] X 20K X X X X
[14] X 250 X X X
[15] X 350 X X X X
[16] X 250 X X X
[17] X 3K X X X
Our X 6K X X X X X X X X

Problem size refers to the largest benchmark used in each paper:
● for DC-PF and DC-OPF, it is measured by the number of buses in the grid;
● for AC-PF and AC-OPF it is 2 times the number of buses in the grid;
● for DC or AC SCOPF these numbers are multiplied by (c+1) where c is the number of explicitly covered contingencies.

case study applied to a publicly available benchmark test
system. In addition, we provide a set of recommendations that
should be followed by researchers. These recommendations
are crucial to precisely assess and document the robustness of
their machine learnt proxies, and to enable the reproducibility
of their results by research community. To the best of our
knowledge, no such study has been previously published.

Table I summarises the scope of various ML-based pro-
posals published in the last few years in order to speed up
power flow (PF), OPF, or SCOPF computations. The table also
indicates the (computational) problem size of the empirical
studies made in these papers, the type of physical PS model
used (AC vs DC), and the general class of machine learning
algorithms (DNN - deep neural network based methods, RF
- random forest types of methods). The last five columns of
this table highlight the dimensions covered by these studies
in order to train and/or evaluate the robustness of the learnt
proxies: variable level and variable distribution of active power
consumed, variable power factor of loads (relevant only for
the studies based on AC models), whether variable system
configurations are covered in terms of either unavailable
generators or lines, and if the studies consider the robustness
of proxies with respect to changes in the objectives function
(i.e. generator costs).

The last line of Table I describes the characteristics of our
AC-SCOPF based study on a medium sized benchmark (but
the largest among the two AC-SCOPF studies of the table,
and the second to largest among all studies using an AC power
system model) and covers relevant dimensions. Moreover, and
most importantly, we highlight in our study the limitations of
proxies trained along a reduced set of dimensions in terms of
transferability to the unaccounted dimensions.

The remainder of the paper is organized as follows. In
Section II we provide the mathematical formulation of the
preventive AC-SCOPF problem and in Section III we provide
relevant information about the machine learning methods used
in our study to construct and assess ML-based proxies. In
Section IV, we describe the problem in terms of test system

and SCOPF formulation and solvers utilized. In Section V,
we provide the results of our robustness study highlighting
the impact of non-extensive training datasets on poor gener-
alization capabilities of the proxies for SCOPF calculations.
In Section VI, we conclude with recommendations and open
problems for further research. To facilitate reproducibility of
our study, we provide further details in the APPENDICES.

II. PREVENTIVE AC-SCOPF FORMULATION

There are two variants of SCOPF calculations [1]: preven-
tive SCOPF [18], and corrective SCOPF [19]. In this paper
we only consider the preventive one (denoted by PSCOPF).

An electric grid can be represented as a graph Γ = (N ,B)
with generators and loads connected to nodes or buses n ∈ N
and branches are contained in B, where B = Bl ∪Bt ∪Bp with
multiple sets for transmission lines (Bl), transformers (Bt),
and phase-shift transformers (Bp). A branch k from node ik

to node jk is defined as b = ((ik, jk), (Y k
x, y

k
x, I

k
x)∣ ik, jk ∈

N , ik ≠ jk, Y k
x ∈ C2×2, ykx ∈ C, Ikx ∈ R+, k ∈

{1,2, . . . , ∣B∣}, x ∈ {l, t, p}). For a branch indexed as k,
Y k
x and ykx are complex nodal admittance matrix and branch

admittance in rectangular forms, respectively, Ikx denotes its
rated maximum current flow, and x denotes branch type.

The subset G ⊂ N contains the indices of the nodes with
generators. The subset Gf ⊂ G contains indices of the nodes
postulated to experience single generator failure. The subset
Lf ⊂ Bl contains transmission-line branches for expected
single-line-failures.

For an operating scenario indexed as c, P c
G, Qc

G ∈ R∣N ∣
represent real and reactive power generations at all nodes,
respectively. The base case or the normal operating sce-
nario is labeled as c = 0, while line and generator con-
tingencies are indexed with labels in sets {1,2, . . . , ∣Lf∣}
and {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣}, respectively. Out of ∣G∣
nodes, one node with a generator is modeled as a reference
node or a slack bus. We label this node with index ’s’.
The problem formulation relies on rectangular coordinates of
complex voltage V c ∈ C∣N ∣.
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The decision variables are real and reactive power sched-
ules for generators, and complex voltages at generator nodes
(except voltage angle for the slack generator at node ’s’),
defined for pre- and post-contingency states of operations.
These are formalized as EP c

G, EQc
G and ErV

c, where
E ∈ {0,1}∣G∣×∣N ∣ and Er ∈ {0,1}(∣G∣−1)×∣N ∣ contain subsets of
rows from ∣N ∣-dimensional identity matrix I ∣N ∣ corresponding
to indices of nodes in sets G and G/{s}, respectively. The
reference node voltage is esV

c, where es is the sth row in
I ∣N ∣. Its imaginary component is assumed to be zero for all
contingency scenarios. The vectors P D, QD ∈ R∣N ∣ denote
nodal real and reactive power demands, respectively. For line-
based contingencies, the nodal or bus admittance matrices are
obtained as Y c = Y 0+Y sh−∆Y c, where Y c,Y 0,Y sh,∆Y c ∈
C∣N ∣×∣N ∣. The base case admittance matrix (Y 0 +Y sh), where
Y sh accounts for shunt admittances, is adjusted for each
line contingency. A sparse matrix ∆Y c is constructed us-
ing nodal admittance matrix Y k

x of failed branch between
nodes (ik, jk) with index k. It consists of four non-zero el-
ements: ∆Y c (ik, ik) = Y k

x (1,1), ∆Y c (jk, jk) = Y k
x (2,2),

∆Y c (ik, jk) = Y k
x (1,2), ∆Y c (jk, ik) = Y k

x (2,1). The
branch-to-node adjacency matrix for base case (c = 0) is
A ∈ {0,1,−1}∣B∣×∣N ∣. Notice that we do not equivalence or
aggregate admittances of multiple branches between same
pair of nodes, as their rated maximum current flows may
differ numerically. Next, we provide the detailed PSCOPF
formulation.

min
EP c

G,

EQc
G,ErV

c

(EP 0
G)⊺diag(a)(EP 0

G) + b⊺EP 0
G + c⊺1 (1)

subject to
Nodal or Bus Constraints

Power Balancing - Base Case and Contingency Scenarios:

P c
G −P D = Re [V̄ c ⊙ (Y cV c)] , (2a)

Qc
G −QD = −Im [V̄ c ⊙ (Y cV c)] , (2b)

Voltage Limits - Base Case and Contingency Scenarios:

V min ⊙V min ⪯ V̄
c ⊙V c ⪯ V max ⊙V max, (2c)

Reference Voltage - Base Case and Contingency Scenarios:

Im (esV̄
c) = 0, (2d)

for all
c ∈ {0} ∪ {1,2, . . . , ∣Lf∣} ∪ {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣} .

Generator-based Constraints
Base Case:

Pmin ⪯ EP 0
G ⪯ Pmax, (3a)

−Qmin ⪯ EQ0
G ⪯Qmax. (3b)

Line Contingencies:

EP c
G = [esP

c
G (ErP

0
G)

⊺]
⊺

, (4a)

esPmin ≤ esP
c
G ≤ esPmax, (4b)

−Qmin ⪯ EQc
G ⪯Qmax, (4c)

(ErV̄
c) ⊙ (ErV

c) = (ErV̄
0) ⊙ (ErV

0), (4d)
for all c ∈ {1,2, . . . , ∣Lf∣} .

Generator Contingencies:

EcP c
G = [esP

c
G (Ec

r P
0
G)

⊺]
⊺

, (5a)

esPmin ≤ esP
c
G ≤ esPmax, (5b)

−Qc
min ⪯ EcQc

G ⪯Qc
max, (5c)

(Ec
r V̄

c) ⊙ (Ec
r V

c) = (Ec
r V̄

0) ⊙ (Ec
r V

0), (5d)
for all c ∈ {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣} .

Line Flow Limits
Base Case and Generator Contingencies:

(ȳBAV̄
c) ⊙ (yBAV c) ⪯ Imax ⊙ Imax, (6a)

for all c ∈ {0} ∪ {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣} .
Line Contingencies:

(ȳcBAV̄
c) ⊙ (ycBAV c) ⪯ Imax ⊙ Imax, (6b)

for all c ∈ {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣} .

In Eq. (1), the objective function is the cost of generation
schedules where a,b,c ∈ R∣G∣. The conservation of real and
reactive powers at all nodes are formalized in Eq. (2a) and
in Eq. (2b), respectively, where V̄

c is the conjugate of V c

and ’⊙’ represents element-wise multiplication of matrices or
their Hadamard product. In Eq. (2c), the voltage magnitudes
at all nodes are constrained within their rated minimum and
maximum values, where V min,V max ∈ R∣N ∣

+
and ’⪯’ denotes

element-wise inequality.
Then, base case real and reactive power generation sched-

ules are constrained within their rated limits in Eq. (3a) and
in Eq. (3b), respectively, where Pmin,Pmax,Qmin,Qmax ∈ R

∣G∣

+
.

For post line-contingency state, Eq. (4a) formalizes real power
generation schedules. Notice that the term ErP

0
G restricts the

real power schedules for generators at non-slack nodes, i.e., at
nodes with labels in G/{s}, to their base case schedules. The
slack generator’s post line-contingency real power schedules
esP

c
G are adjusted to match variations in line losses, which are

manifestations of redistributed power flows. These adjusted
schedules must conform to the rated limits, as formalized
in Eq. (4b). A generator’s reactive power, unlike its real
power, can be regulated near instantaneously. So post line-
contingency reactive power schedules for all generators in
Eq. (4c) are adjusted to accommodate changes in power flows.
In Eq. (4d), pre and post line-contingency voltage magnitudes
for generators at nodes G/{s} are constrained to be identical.
The constraints for post generator-contingency scenarios in
Eq. (5a) - Eq. (5d) are qualitatively similar to those in Eq. (4a)
- Eq. (4d), respectively. The matrices Ec ∈ {0,1}(∣G∣−1)×∣N ∣
and Ec

r ∈ {0,1}(∣G∣−2)×∣N ∣ contain subset of rows from I ∣N ∣
corresponding to indices of the vertices in sets G/{gc} and
G/{s,gc}, respectively, where gc ∈ Gf is the node for generator
contingency c. The vectors Qc

min,Q
c
max ∈ R(∣G∣−1)

+
for all

c ∈ {∣Lf∣ + 1, ∣Lf∣ + 2, . . . , ∣Lf∣ + ∣Gf∣}. Finally, Eq. (6a) and
Eq. (6b) characterize line flow constraints for pre- and post-
contingency states, where Imax ∈ R∣B∣

+
. For base case and

generator contingencies, yB ∈ C∣B∣ is constructed with branch
admittances as yB = [y1x, y2x, . . . , y

∣B∣

x ]
⊺

. Lastly, ycB = yB−∆yB
where ∆yB contains exactly one non-zero element correspond-
ing to failed line with index k, i.e., ∆yB (k,1) = ykx.
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III. MACHINE LEARNING METHODS

In this section we document the machine learning algo-
rithms we are using in this paper, and we provide definitions
of relevant concepts.

A. ML Algorithms
1) Deep neural networks [20], [21]: We selected a

single fully-connected deep neural network architecture
for all scenarios presented in this paper. We considered a
four-layered architecture and ReLU activation function for
forward pass: an input layer with 44 nodes, an output layer
with 46 nodes, and two hidden layers with 150 neurons each.
PyTorch-1.12 was used. In terms of data preprocessing, both
inputs and outputs were standardized. Other hyper-parameters
include: Adam as optimizer with a learning rate of 0.002,
mean square error as a learning criterion, and 300 epochs
with a mini-batch size of 32.

2) Random forests: We use Extremely randomized trees
(ERT), which is a tree ensemble-learning algorithm composed
of multiple decision (regression) trees, similar to classical
Random forests [22]. In case of ERT, random cut-points
are selected for the splits at each test node in the decision
(regression) tree. On our machine learning problems, the
ERT method was significantly faster in training than Random
forests and yielded comparable accuracy. For this paper, we
used the “Extra Tree” package of Scikit learn [23], with an
ensemble size of 500 fully developed regression trees and
default parameter settings.

B. Definitions
Definition 1 (Homogenous function): A function

f ∶ Rn×1 → R is a homogenous function of degree α if
f (λx) = λαf (x) for all λ > 0 where x ∈ Rn×1. ◇

Definition 2 (Monotonic transformation): A monotonic
transformation of a function f ∶ Rn×1 → R is defined as a
composite function g ○ f ∶ Rn×1 → R where g ∶ R → R is
strictly increasing. ◇

Definition 3 (Homothetic function): A function
h ∶ Rn×1 → R is a homothetic function if it is a monotonic
transformation of a homogenous function as h = g ○ f where
h ∶ Rn×1 → R, g ∶ R→ R is a strictly increasing function, and
f ∶ Rn×1 → R is a homogenous function. ◇

All homogenous functions are homothetic functions. The
level set of a function f ∶ Rn×1 → R is a set where it takes a
constant value, i.e., lc (f) = {x∣f (x) = c, c ∈ R}. If a function
f ∶ Rn×1 → R is also homogenous, and hence homothetic by
default, then level sets of f ∶ Rn×1 → R are radial expansions
of one another, i.e., if f (x) = f (y) then f (λx) = f (λy) for
λ > 0 based on Definition 1. In other words, if x and y are
on same level set, then their positively scaled values λx and
λy are on same level set as well. As a consequence, gradients
of tangent hyperplanes to level sets along rays from the origin
are constant, i.e., ∂f(λx)

∂xi
/∂f(λx)

∂xj
equals ∂f(x)

∂xi
/∂f(x)
∂xj

for all i, j
and λ > 0.

Definition 4 (Coefficient of Determination [24]): Given
ground truths yi ∈ R and their predicted values ŷi ∈ R
for i ∈ {1,2,3, . . . ,N}, the coefficient of determination R2

between them is defined as:

R2 = 1 − ∑
N
i=1 (yi − ŷi)

2

∑Ni=1 (yi − ȳ)
2
,

where ȳ = (∑Ni=1 yi)/N . ◇

The R2 metric is the standard metric to assess regression
methods in machine learning studies in a dimension-less way.
A value close to 1 gotten on a large enough test sample is
an indicator of good generalization to the distribution used
to generate that test sample. A value close to 0 reflects the
(disappointing) fact that the predictor is only as accurate as
the estimation via the best constant model (in the least-squares
sense this is the sample mean ȳ). Significantly negative values
indicate an even more pathological situation, which may be
due to strong overfitting on the training sample or bad transfer
from a learning sample data-generating distribution towards a
different test-sample data-generating distribution.

We strongly advocate to use the R2 metric for robustness
assessment of SCOPF proxies. For the sake of comparison,
we will nevertheless provide some error metrics expressed in
MW/MVAr as often used in the power system literature.

IV. TEST PROBLEM SETUP

Our test system is a modified version [25] of the Swedish
transmission network, i.e., the Nordic32 electric grid from [26]
(refer to Fig. A1 and Fig. A2 in APPENDIX-I). This 60-bus
grid has 22 loads, 22 synchronous machines and a tie-line flow
from Norway (represented as a single equivalent generator)
as sources of real and reactive powers, and we consider an
exhaustive set of 52 line and generator based contingencies
(details provided in APPENDIX-I).

We rely on a physical simulator for the computation of
PSCOPF solutions to generate multiple datasets Sγ . All sim-
ulations have been performed in the open-source Julia/JuMP
programming language, resorting to IPOPT to solve all AC
PSCOPF problems (see [27] for further details).

Each dataset has about 10,000 operating states of differ-
ent real and reactive power demands described by 44 input
features (corresponding to the vectors of active and reactive
load demands), and 46 output features (corresponding to
optimal real and reactive power generations from synchronous
machines and the tie-line flow from Norway computed, as
by the PSCOPF). By utilizing 80% of samples in each
dataset Sγ for training, we build ML-based multi-input multi-
output (MIMO) regression models: i) d̂γ ∶ R44 → R46 with
feed-forward Deep Neural Networks (DNN) as a parametric
learning-based approach, and, ii) êγ ∶ R44 → R46 using
Extremely Randomized Trees, as a non-parametric supervised
machine learning algorithm (see Section III).

The remainder of 20% samples in each dataset Sγ are
utilized as test set Tγ . These test sets are subsequently used
to gauge robustness of the ML-based proxies. In Section V
we discuss only the results obtained by using DNN-based
PSCOPF proxies (Tables A1 and A2 show that our conclusions
would be the same based on RF-based proxies).
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V. ROBUSTNESS STUDY

For large-scale electric grids, data samples corresponding
to SCOPF solutions are typically high-dimensional in nature.
To build ML-based proxies, high-dimensional data samples
are utilized to approximate lower-dimensional spaces or man-
ifolds. This, in theory, is known as manifold hypothesis.
It states that samples of high-dimensional data form low-
dimensional non-linear manifolds, i.e., datasets lie in spaces
of arbitrary dimensions embedded within high-dimensional
space [28]. This is attributed to constraints arising from
underlying physical laws of the real-world phenomena, for
which data samples are collected [29]. Suppose we aim to
build a MIMO regression model as a high-accuracy SCOPF es-
timator. A prerequisite to achieve this objective involves fitting
low-dimensional nonlinear manifolds with samples mapping
wide range of operating conditions. This, however, begets a
combinatorial approach for an extensive dataset generation.
We illustrate inadequacies of datasets towards high-fidelity
proxy construction, if factors influencing SCOPF solutions are
unaccounted for. We cover a subset of factors, particularly
Variability and Uncertainty, Exogenous Disturbances, Vari-
able System Structure, as enlisted in Section I.

A. Variability and uncertainty of net demand

The cardinal source of variability and uncertainty are load
scenarios. Now consider following mathematical formulations
to generate random real and reactive power demands:

PD = (α ⋅Phigh
D + (1 − α) ⋅Plow

D ) ⊙ (1 + βP ⋅wP ) , (7a)

pf = pf high ⊙ (1 + βQ ⋅wQ) , (7b)

where Plow
D ,Phigh

D ∈ R22
+

vectorize minimum and peak values
for real power demands, respectively, with Plow

D = 0.6 ⋅Phigh
D .

The real power demands are varied homothetically between
their extremes with the scalar α drawn from a uniform dis-
tribution U (0, 1). To randomize further, we take an element-
wise or hadamard product (⊙) with gaussian noises wP ∈ R22,
generated independently with normal distributions N (0, 1)
and scaled by βP ∈ R+.

The corresponding reactive power profiles are generated by
randomizing power factors pf in Eq. (7b) with gaussian noises
wQ ∈ R22, once again generated independently with normal
distributions N (0, 1) and scaled by βQ ∈ R+, where pf high ∈
R22 contains power factors for peak demand scenario.

We leverage the pair {βP , βQ} in Eq. (7) to generate
demand samples or load scenarios with varying degree of
homotheticity and noise characteristics. These load scenarios
serve as inputs to physical simulator for PSCOPF solutions.
For each assumption of the pair {βP , βQ}, we generate
around 10,000 feasible PSCOPF solutions with random load
scenarios. These PSCOPF solutions are utilized to construct
datasets Sγ , as described in Section IV.

1) Assumptions about the load distribution: We begin by
considering {βP = 0.07, βQ = 0.02}. These non-zero values re-
sult in non-homothetic load scenarios for generation of dataset
Sa. We refer to PSCOPF solutions in Sa as base-case sce-
nario. Next, we generate dataset Sb with {βP = 0.07, βQ = 0}.
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d̂b,Tb
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(a) PG: Real Power Generations
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(b) QG: Reactive Power Generations

Fig. 1: R2 scores for output features predicted under scenarios:
{d̂a,Ta}, {d̂b,Tb}, {d̂c,Tc}

By setting βQ = 0 we ensure that power factors are con-
stant. We also generate a dataset Sc by considering homo-
thetic real power demands and constant power factors, i.e.,
{βP = 0, βQ = 0}. Now we consider DNN-based MIMO re-
gression models d̂a, d̂b, and d̂c, trained with 8000 samples from
Sa,Sb, and Sc, respectively. We assess predictive accuracies
of these models using goodness-of-fit test. For each of the 46
output features, we calculate the coefficient of determination
or R2 score. If predicted values of an output feature very well
match ground truths in a test set, then that output feature’s
coefficient-of-determination is close to unity, or, R2 ≈ 1 sig-
nifies a high-accuracy predictor. However, if R2 ∉ [0,1], then
the predictor is of extremely low-accuracy. From Section IV,
recall that we left 20% of the samples in test sets. We now
assess how accurately MIMO models d̂a, d̂b, and d̂c predict
test samples in sets Ta,Tb, and Tc, respectively. In Fig. 1, we
visualize R2 scores as raincloud plots [30], [31].

It depicts distributions and box-plots for R2 scores for
three testing scenarios, plotted separately for real and reactive
power generations. Only output features with R2 scores in
range [0,1] are considered, and their counts are numbered
along x-axes. The red curves delineate averages of R2 scores
under all scenarios, i.e., R2

avg. These curves lie above 0.92,
signifying high predictive accuracies for real and reactive
power demands. Notice that average goodness-of-fit for output
features (R2

avg) increases with higher degree of homotheticity.
For scenario {d̂c,Tc} in Fig. 1, distributions of R2 scores
have low variance and their averages are very close to unity.
Effectively, PSCOPF manifolds for homothetic load scenarios
are simple to learn. In Fig. 2, we highlight the impact of ho-
motheticity on generalization capabilities. It depicts raincloud
plots for cross-testing scenarios: {d̂a,Tb}, {d̂a,Tc}, {d̂b,Ta},
{d̂b,Tc}, {d̂c,Ta}, {d̂c,Tb}.

The predictor d̂a was constructed by training a DNN with
PSCOPF solutions for non-homothetic load scenarios with
variable power factors. It transfers well to constant power-
factor (Tb) and homothetic (Tc) load scenarios with R2

avg ≥ 0.91
for both real and reactive power generations. The average
goodness-of-fit for real (R2

avg ≤ 0.83) and reactive (R2
avg ≤

0.61) power generations are lowest with predictor d̂c. As a
point-in-case, in Fig. 3 we contrast tie-line flow estimates for
scenarios {d̂c,Tc}, {d̂c,Ta}, {d̂c,Tb}.
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(b) QG: Reactive Power Generations

Fig. 2: R2 scores for output features predicted under scenarios:
{d̂a,Tb} {d̂a,Tc}, {d̂b,Ta} {d̂b,Tc}, {d̂c,Ta} {d̂c,Tb}
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Fig. 3: Tie-line flow (i.e. g22 production) predictions
(P ∗

tie,Q
∗

tie) vs. ground truths (Ptie,Qtie) under scenarios:
{d̂c,Tc} {d̂c,Ta}, {d̂c,Tb}. Flows are expressed in per unit
of a 100 MVA base

Notice that tie-line active and reactive power flow estimates
under scenario {d̂c,Tc} near-perfectly mirror ground truths.
In contrast, prediction inaccuracies and interquartile ranges
are large in cross-testing scenarios {d̂c,Ta}, {d̂c,Tb}. Thereby,
mean-squared and mean-absolute errors for tie-line predictions
are larger in scenarios {d̂c,Ta}, {d̂c,Tb}, as shown in Table II.
To summarize, an overall drop in generalization capability is
observed with increasing degree of homotheticity used for the
training sample generation.

2) Assumptions about power factors: The parameter βQ in
Eq. (7) characterizes the range over which the power factor

TABLE II: Prediction errors for tie-line flows

Deep Neural Network: MIMO Regressors
Error d̂c, Tc d̂c, Ta d̂c, Tb

Root Mean ∆Ptie=2.02 MW ∆Ptie=113 MW ∆Ptie=113.9 MW

Square ∆Qtie=0.66 MVar ∆Qtie=35.22 MVar ∆Qtie=34.18 MVar

Mean ∆Ptie=1.47 MW ∆Ptie=89.76 MW ∆Ptie=89.78 MW

Absolute ∆Qtie=0.46 MVar ∆Qtie=27.77 MVar ∆Qtie=26.73 MVar
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(b) QG: Reactive Power Generations

Fig. 4: R2 scores for output features predicted under scenarios:
{d̂a,Td}, {d̂d,Ta}

of net demands is expected to fluctuate. As non-synchronous
technologies proliferate and replace synchronous machines, at
both transmission and distribution level, a significant impact is
forecasted on reactive power demands and generations [32].
Reactive power demands may substantially alter generation
profiles, and hence, PSCOPF solutions. To illustrate this, we
generate a dataset Sd similar to base-case dataset Sa in terms
of active power variability, but with amplified variability of
power factors, i.e, {βP = 0.07, βQ = 0.05}.

Once again, we train a DNN by using 8000 training samples
from Sd. The resulting MIMO regressor d̂d exhibits an average
goodness-of-fit R2

avg ≥ 0.923 on the test set Td. But, consider
in Fig. 4, box-plots and distributions for R2 scores under
cross-testing scenarios: {d̂a,Td}, {d̂d,Ta}. The goodness-of-
fit averages (R2

avg) less than 0.8, for both real and reactive
power generations. The total number of output features with
R2 ∈ [0,1] also strongly drops. Note that d̂a was obtained with
8000 PSCOPF solutions in Sa, computed for non-homothetic
load scenarios. Yet, it does not well transfer to Td. We conclude
that the randomization of reactive power demands profoundly
impacts a proxy’s generalization capability.

To summarize, random demand scenarios for dataset gener-
ation must reflect potential variabilities and uncertainty bounds
of both active and reactive power. Furthermore, parameter α
in Eq. (7a) can be vectorized for finer modeling, as large
industrial and commercial loads may exhibit non-conventional
diurnal variations. Similarly, {βP , βQ} could be modeled as a
pair of time-varying vectors. This would enable temporal and
spatial disaggregation of uncertainty bounds.

B. Exogenous market disturbances

The dependencies of electric grids on external energy
networks are exogenous sources of disturbances. A prime
example is of infrastructural couplings with gas and oil
pipelines. For optimal power flow solutions, such externalities
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alter generation profiles via the objective function. Consider
a dataset Se generated with parameters used to construct
base-case dataset Sa, but with different production costs for
gas-fired generators {g2, g11, g14, g18}, and for tie-line flows
(marked as g22 in Fig. A2). These costs were scaled-up to
2-3 times of the values assumed to construct Sa. In Fig. 5,
we contrast reduced predictive accuracies for cross-testing
scenarios: {d̂a,Te}, {d̂e,Ta}.
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(b) QG: Reactive Power Generations

Fig. 5: R2 scores for output features predicted under scenarios:
{d̂a,Te}, {d̂e,Ta}

The abundances of, or, interruptions in fuel supplies, man-
ifest as cost variations and may result in new manifolds of
PSCOPF solutions, for which the model is untrained. As an
example, in Fig. 6 we include histogram plots for real power
outputs of generator g9 in datasets Sa and Se.
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Fig. 6: Histogram plots for real power outputs of generator g9
in PSCOPF-solution datasets: a) Sa, b) Se. Generation powers
are expressed in per unit of a 100 MVA base

C. Variable system topology
A power system’s topology is perpetually in a state of

flux. Some common causes include scheduled maintenances
of lines, generators, substations, market-driven unit commit-
ments, and their inadvertent tripping or failures. A rich dataset

must also contain PSCOPF solutions for topologies resulting
from planned network configurations and plausible outages.
As we illustrate next, PSCOPF solutions under certain system
topologies may lie in a qualitatively different low-dimensional
manifold, while PSCOPF solutions for some system topologies
are generalizable with a smaller sample set.

1) Grid-based topology variations: We now consider
datasets Sf and Sg, containing PSCOPF solutions for two grid
topologies. In each topology, we assume an out-of-service line
at sub-transmission level (130 kV). In Fig. A2, these lines con-
nect buses {1043,1044} (Sf) and {1011,1013} (Sg). Each line has
a flow limit of 175 MVA. To generate Sf and Sg, load scenarios
were randomized with {βP = 0.07, βQ = 0.02} in Eq. (7),
similar to values assumed to construct Sa. The corresponding
MIMO regressors, d̂f and d̂g, obtained by training DNNs with
samples from Sf and Sg, respectively, provide R2

avg ≥ 0.907 for
scenarios {d̂f,Tf}, {d̂g,Tg}. Fig. 7(a) and Fig. 7(b) depict rain-
cloud plots for R2 scores under scenarios: {d̂a,Tf}, {d̂f,Ta}.
Mean goodness-of-fit for real power outputs are 0.688 and
0.81, averaged for 10 and 8 sources out of 23, respectively.
The prediction accuracies are lower for reactive power outputs
with R2

avg values 0.72 and 0.42, averaged for 7 and 3 sources,
respectively. Now, contrast these performance indices with
those obtained for cross-testing scenarios: {d̂a,Tg}, {d̂g,Ta}.
As shown in Fig. 7(c) and Fig. 7(d), R2

avg scores are greater
than 0.803 for real and reactive power output estimates, and
are averaged for at least 20 out of 23 features. Even with
identical capacity ratings of 175 MW for out-of-service lines,
generalizabilities of PSCOPF solutions in datasets Sf and
Sg differ significantly. One must note that in the Nordic32
system, bulk of electricity is transmitted from north to south
via five high-capacity interconnections. By opening a single
branch between {1043,1044} in south, which is relatively closer
to bulk transmission lines in centre, qualitatively different
PSCOPF solutions are obtained. In comparison, the out-of-
service status of line connecting buses {1011,1013} in northern
most region, has a minimal impact on north-to-south flows.
To conclude, certain topologies necessitate an exclusive or
a dedicated dataset construction. For instance, sampling low-
load conditions where in a few lines are opened to preclude
voltage transients/overshoots.

2) Generation-based topology variations: The generation
portfolio varies with unit commitments. Thus, irrespective of
planned or unforeseen grid outages, system topology changes
due to start-up and shutdown of generators within an operating
hour. Let us construct PSCOPF-solution datasets Sh and Si
by assuming g1 and g8 in offline mode, respectively. The
rated nameplate capacity for generator g1 is 720 MW, and 965
MW for generator g8. In each case, load scenarios were ran-
domized with parameters {βP = 0.07, βQ = 0.02} in Eq. (7).
We once again construct DNN-based MIMO regressors d̂h
and d̂i by using 8000 samples from Sh and Si, respectively.
An average goodness-of-fit is greater than 0.942 under self-
testing scenarios {d̂h,Th}, {d̂i,Ti}. Now consider R2 scores
for cross-testing scenarios {d̂a,Th} {d̂h,Ta} in Fig. 8(a) and
Fig. 8(b). The distribution of R2 scores for real power gen-
erations exhibits a low variance. A plausible reason is the
fact that cost objective is a function of real power outputs.
So, different reactive power generations in dataset Sh enable
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(d) QG: {d̂a,Tg}, {d̂g,Ta}

Fig. 7: R2 scores for real and reactive power generations
predicted under scenarios: a), b) {d̂a,Tf}, {d̂f,Ta} c), d)
{d̂a,Tg}, {d̂g,Ta}

real power outputs near-similar to those in base-case set Sa.
This is indicated by R2

avg > 0.937 for 17 out of 23 sources
in Fig. 8(a). We notice a similar observation under scenarios
{d̂a,Ti} {d̂i,Ta} in Fig. 8(c) and Fig. 8(d), albeit with lower
goodness-of-fit averages for real power outputs (R2

avg < 0.87).
For illustrative purposes, we considered modest variations
in generation portfolio. But, in practice, multiple generators
often disconnect from, or, reconnect to the network within an
operating hour. In the future, inter- and intra-hour variations in
generation portfolios are expected to be more pronounced. For
example, frequent unit commitments are required to balance
duck-shaped diurnal variations caused by solar parks.

VI. RECOMMENDATIONS AND RESEARCH DIRECTIONS

In this paper we have studied the impact of relevant dimen-
sions on the data generation process used to build and evaluate
ML-based (SC)(O)PF proxies. We raise awareness that a set
of multiple lower-order manifolds results from topological
variations, random load scenarios, fluctuations in production
costs, to cite a few influencing factors. These factors will also
impact predictive accuracies of ML-based proxies proposed
for optimal power flow, power flow, direct current power flow,
and other possible variants [5]–[15]. Our extensive case study
was based on 8 different dataset sampling assumptions, each
one covered by 10,000 AC-SCOPF computations for a 60-bus
system and 52 contingencies. Using both DNN and RF, two
very different state-of-the-art ML methods, we generated 2×8
different machine learnt proxies, and evaluated them in 2×34
train/test combinations. To the best of our knowledge this is
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(c) PG: {d̂a,Ti}, {d̂i,Ta}
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(d) QG: {d̂a,Ti}, {d̂i,Ta}

Fig. 8: R2 scores for real and reactive power generations
predicted under scenarios: a), b) {d̂a,Th}, {d̂h,Ta} c), d)
{d̂a,Ti}, {d̂i,Ta}

by far the most comprehensive empirical robustness study of
machine-learnt proxies for (SC)(O)PF computations.

We see that an abundance of samples is inconsequential if
these samples are not representative of relevant manifolds for
typical operating conditions witnessed in real-world utilities.
Yet, the process of constructing an extensive dataset is rather
combinatorial in nature. Possible solutions, to overcome these
challenges, pass by the consideration of our 5 main dimensions
of dataset generation in order to do sound academic research.

On the other hand, the availability of non-simulated datasets,
provided from historians of TSO SCADA platforms would
be most useful, e.g. in order to help designing representative
simulated datasets. In our study, we found that the range of
demand patterns is an important subject, and both active and
reactive demand combinations need to be well covered. Also,
changing the cost function or the system configuration may
jeopardize the validity of machine-learnt proxies.

Reinforcement learning [16], training multiple proxies for
different topological variations [4], or use of proxies to reduce
iterations in optimization processes [17] are relevant research
directions. However, alternative solutions must be explored
wherein proxies are shown to be able to learn new abstractions
that indeed span the desired range of conditions targeted by
their practical application scenarios in planning and opera-
tion. As an example, graph-theoretic data representations can
potentially generalize (SC)(O)PF solutions under topological
variations [33], [34].

Finding solutions to these open problems is crucial to inspire
trust and confidence for the deployment of AI/ML-driven
(SC)(O)PF calculators in the real world.
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APPENDIX-I
NORDIC32 SYSTEM

The Nordic32 network, prepared for voltage stability and
security assessment [26], is a synchronous interconnection
of Swedish network, and parts of Norwegian and Finnish
transmission-level networks along with Zealand, the eastern
part of the Danish network, as depicted in Fig. A1. The one-
line diagram of the modified Nordic32 system is shown in
Fig. A2. Here, the original 74-bus system in [26] is modified
to a 60-bus network. Structurally, there are two main modi-
fications. First of all, for the purpose of preventive security-
constrained optimal power flow calculations, 22 distribution-
level transformers aren’t modeled and 22 loads are connected
directly to high-voltage buses.

Fig. A1: Nordic32 network location within Swedish
transmission-level system (image courtesy: [35])

Secondly, interconnected transmission-level (400, 220 kV)
and sub-transmission-level (130 kV) networks are bifurcated
into two regions, NORTH and SOUTH, in contrast to four
areas in [26]. The control area in NORTH is generation
dominant with moderate load level, while the area in SOUTH
has significant loading level and low generation capacity.
Then, interconnecting the generation-heavy NORTH to the
load-heavy SOUTH are long series compensated 400 kV
transmission lines, two between buses {4031,4041} , and one
each between buses {4032,4044} , {4032,4042} , {4021,4042} . For
reactive power management, there are three inductive and
one capacitive shunts in NORTH, and eight capacitive shunts
in SOUTH. The electric grid consists of 21 generators, a
synchronous condenser (g13 at bus 4041 ) and a tie-line flow
from Norway (equivalenced as generator g22 at bus 4072 ),

Fig. A2: One-line diagram for modified Nordic32 system:
highlighted generator and line contingencies for reliability
assessments

coupled via 23 step-up transformers. Lastly, there are 52 non-
transformer and non–series-compensator branches, i.e. true
transmission lines.

For grid reliability, security-constrained optimal power flow
solutions account for 33 transmission line-based contingencies
{ {1011,1013} , {1012,1014} , {1013,1014} , {1021,1022} , {1041,1043} ,
{1041,1045} , {1042,1044} , {1042,1045} , {1043,1044} , {2031,2032} ,
{4011,4012} , {4011,4021} , {4011,4022} , {4011,4071} , {4012,4022} ,
{4012,4071} , {4021,4032} , {4022,4031} , {4031,4032} , {4041,4044} ,
{4041,4061} , {4042,4043} , {4042,4044} , {4043,4044} , {4043,4046} ,
{4043,4047} , {4044,4045} , {4045,4051} , {4045,4062} , {4046,4047} ,
{4061,4062} , {4062,4063} , {4071,4072}}, and 19 generator-based
contingencies {g1, g2, g3, g4, g5, g6, g7, g8, g10, g11, g12,
g14, g16, g17, g17b, g18, g19, g20, g21}.
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APPENDIX-II
RESULT SUMMARY

TABLE A1: R2
avg Scores for Deep Neural Networks

Deep Neural Network: MIMO Regressors
Model Test Set: Ta Test Set: Tb Test Set: Tc

d̂a

R2
avg=0.973

PG ∶(22/23)

R2
avg=0.986

PG ∶(22/23)

R2
avg=0.992

PG ∶(22/23)

R2
avg=0.927

QG ∶(23/23)

R2
avg=0.957

QG ∶(22/23)

R2
avg=0.975

QG ∶(22/23)

d̂b

R2
avg=0.969

PG ∶(22/23)

R2
avg=0.986

PG ∶(22/23)

R2
avg=0.996

PG ∶(22/23)

R2
avg=0.910

QG ∶(23/23)

R2
avg=0.957

QG ∶(22/23)

R2
avg=0.985

QG ∶(22/23)

d̂c

R2
avg=0.828

PG ∶(23/23)

R2
avg=0.835

PG ∶(23/23)

R2
avg=0.999

PG ∶(23/23)

R2
avg=0.634

QG ∶(23/23)

R2
avg=0.624

QG ∶(23/23)

R2
avg=0.998

QG ∶(23/23)

Model Test Set: Ta Test Set: Td Test Set: Te

d̂a

R2
avg=0.973

PG ∶(22/23)

R2
avg=0.761

PG ∶(13/23)

R2
avg=0.760

PG ∶(13/23)

R2
avg=0.927

QG ∶(23/23)

R2
avg=0.559

QG ∶(14/23)

R2
avg=0.625

QG ∶(13/23)

d̂d

R2
avg=0.579

PG ∶(19/23)

R2
avg=0.956

PG ∶(20/23)

R2
avg=0.634

QG ∶(16/23)

R2
avg=0.923

QG ∶(22/23)

NA

d̂e

R2
avg=0.580

PG ∶(19/23)

R2
avg=0.942

PG ∶(20/23)
NA

R2
avg=0.637

QG ∶(16/23)

R2
avg=0.909

QG ∶(20/23)

Model Test Set: Ta Test Set: Tf Test Set: Tg

d̂a

R2
avg=0.973

PG ∶(22/23)

R2
avg=0.688

PG ∶(10/23)

R2
avg=0.909

PG ∶(23/23)

R2
avg=0.927

QG ∶(23/23)

R2
avg=0.423

QG ∶(07/23)

R2
avg=0.803

QG ∶(21/23)

d̂f

R2
avg=0.810

PG ∶(08/23)

R2
avg=0.918

PG ∶(23/23)

R2
avg=0.822

PG ∶(08/23)

R2
avg=0.727

QG ∶(03/23)

R2
avg=0.905

QG ∶(22/23)

R2
avg=0.491

QG ∶(05/23)

d̂g

R2
avg=0.938

PG ∶(22/23)

R2
avg=0.666

PG ∶(10/23)

R2
avg=0.978

PG ∶(22/23)

R2
avg=0.876

QG ∶(20/23)

R2
avg=0.401

QG ∶(07/23)

R2
avg=0.917

QG ∶(23/23)

Model Test Set: Ta Test Set: Th Test Set: Ti

d̂a

R2
avg=0.973

PG ∶(22/23)

R2
avg=0.942

PG ∶(17/23)

R2
avg=0.852

PG ∶(17/23)

R2
avg=0.927

QG ∶(23/23)

R2
avg=0.814

QG ∶(19/23)

R2
avg=0.564

QG ∶(19/23)

d̂h

R2
avg=0.937

PG ∶(17/23)

R2
avg=0.986

PG ∶(21/23)

R2
avg=0.896

PG ∶(14/23)

R2
avg=0.837

QG ∶(20/23)

R2
avg=0.949

QG ∶(22/23)

R2
avg=0.687

QG ∶(17/23)

d̂i

R2
avg=0.872

PG ∶(17/23)

R2
avg=0.927

PG ∶(14/23)

R2
avg=0.982

PG ∶(23/23)

R2
avg=0.654

QG ∶(19/23)

R2
avg=0.715

QG ∶(16/23)

R2
avg=0.942

QG ∶(22/23)

TABLE A2: R2
avg Scores for Random Forests

Extremely Randomized Trees: MIMO Regressors
Model Test Set: Ta Test Set: Tb Test Set: Tc

êa

R2
avg=0.878

PG ∶(23/23)

R2
avg=0.882

PG ∶(23/23)

R2
avg=0.989

PG ∶(22/23)

R2
avg=0.852

QG ∶(22/23)

R2
avg=0.818

QG ∶(23/23)

R2
avg=0.935

QG ∶(22/23)

êb

R2
avg=0.884

PG ∶(23/23)

R2
avg=0.893

PG ∶(23/23)

R2
avg=0.987

PG ∶(23/23)

R2
avg=0.855

QG ∶(22/23)

R2
avg=0.821

QG ∶(23/23)

R2
avg=0.941

QG ∶(22/23)

êc

R2
avg=0.819

PG ∶(22/23)

R2
avg=0.826

PG ∶(22/23)

R2
avg=1.0

PG ∶(23/23)

R2
avg=0.654

QG ∶(22/23)

R2
avg=0.655

QG ∶(22/23)

R2
avg=1.0

QG ∶(23/23)

Model Test Set: Ta Test Set: Td Test Set: Te

êa

R2
avg=0.878

PG ∶(23/23)

R2
avg=0.666

PG ∶(14/23)

R2
avg=0.635

PG ∶(15/23)

R2
avg=0.852

QG ∶(22/23)

R2
avg=0.543

QG ∶(16/23)

R2
avg=0.594

QG ∶(15/23)

êd

R2
avg=0.536

PG ∶(20/23)

R2
avg=0.845

PG ∶(21/23)

R2
avg=0.605

QG ∶(17/23)

R2
avg=0.743

QG ∶(23/23)

NA

êe

R2
avg=0.542

PG ∶(20/23)

R2
avg=0.805

PG ∶(22/23)
NA

R2
avg=0.617

QG ∶(17/23)

R2
avg=0.770

QG ∶(23/23)

Model Test Set: Ta Test Set: Tf Test Set: Tg

êa

R2
avg=0.878

PG ∶(23/23)

R2
avg=0.613

PG ∶(10/23)

R2
avg=0.881

PG ∶(22/23)

R2
avg=0.852

QG ∶(22/23)

R2
avg=0.521

QG ∶(07/23)

R2
avg=0.748

QG ∶(21/23)

êf

R2
avg=0.638

PG ∶(10/23)

R2
avg=0.744

PG ∶(23/23)

R2
avg=0.634

PG ∶(10/23)

R2
avg=0.519

QG ∶(08/23)

R2
avg=0.721

QG ∶(22/23)

R2
avg=0.533

QG ∶(08/23)

êg

R2
avg=0.842

PG ∶(23/23)

R2
avg=0.609

PG ∶(10/23)

R2
avg=0.877

PG ∶(23/23)

R2
avg=0.780

QG ∶(20/23)

R2
avg=0.520

QG ∶(07/23)

R2
avg=0.804

QG ∶(23/23)

Model Test Set: Ta Test Set: Th Test Set: Ti

êa

R2
avg=0.878

PG ∶(23/23)

R2
avg=0.907

PG ∶(17/23)

R2
avg=0.812

PG ∶(17/23)

R2
avg=0.852

QG ∶(22/23)

R2
avg=0.707

QG ∶(20/23)

R2
avg=0.600

QG ∶(19/23)

êh

R2
avg=0.833

PG ∶(17/23)

R2
avg=0.935

PG ∶(20/23)

R2
avg=0.833

PG ∶(13/23)

R2
avg=0.713

QG ∶(20/23)

R2
avg=0.813

QG ∶(23/23)

R2
avg=0.613

QG ∶(16/23)

êi

R2
avg=0.826

PG ∶(16/23)

R2
avg=0.872

PG ∶(13/23)

R2
avg=0.910

PG ∶(23/23)

R2
avg=0.594

QG ∶(19/23)

R2
avg=0.629

QG ∶(16/23)

R2
avg=0.794

QG ∶(23/23)
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[35] S. Müller, “Development of Nordic 32 system model and performance
analysis based on real operation statistics,” KTH, School of Electrical
Engineering and Computer Science (EECS), 2019.

https://www.sciencedirect.com/science/article/pii/S0378779611000885
https://www.sciencedirect.com/science/article/pii/S0378779611000885
https://www.sciencedirect.com/science/article/pii/S0378779611000885
https://ieeexplore.ieee.org/document/9335481
https://ieeexplore.ieee.org/document/9335481
https://ieeexplore.ieee.org/document/9335481
https://www.sciencedirect.com/science/article/pii/S0378779622006629
https://www.sciencedirect.com/science/article/pii/S0378779622006629
https://www.sciencedirect.com/science/article/pii/S0378779622006629
https://ieeexplore.ieee.org/document/9858650
https://ieeexplore.ieee.org/document/9858650
https://ieeexplore.ieee.org/document/9858650
https://ieeexplore.ieee.org/document/8909795
https://ieeexplore.ieee.org/document/8909795
https://ieeexplore.ieee.org/document/8918690
https://dl.acm.org/doi/abs/10.1287/ijoc.2020.1037
https://dl.acm.org/doi/abs/10.1287/ijoc.2020.1037
https://ieeexplore.ieee.org/document/9940481
https://ieeexplore.ieee.org/document/9940481
https://arxiv.org/abs/2004.09342
https://arxiv.org/abs/2004.09342
https://ieeexplore.ieee.org/document/9355288
https://ieeexplore.ieee.org/document/9355288
https://ieeexplore.ieee.org/document/9709643
https://ieeexplore.ieee.org/document/9709643
https://arxiv.org/abs/1911.06784
https://arxiv.org/abs/1911.06784
https://ieeexplore.ieee.org/document/9599383
https://ieeexplore.ieee.org/document/9599383
https://arxiv.org/abs/1910.08842
https://arxiv.org/abs/1910.08842
https://www.sciencedirect.com/science/article/pii/S0378779622005636
https://www.sciencedirect.com/science/article/pii/S0378779622005636
https://ieeexplore.ieee.org/document/9069289
https://ieeexplore.ieee.org/document/9069289
https://ieeexplore.ieee.org/document/9844847
https://ieeexplore.ieee.org/document/4075418
https://ieeexplore.ieee.org/document/4335095
https://ieeexplore.ieee.org/document/4335095
https://github.com/glouppe/info8010-deep-learning
https://github.com/glouppe/info8010-deep-learning
http://www.deeplearningbook.org
https://doi.org/10.1007/s10994-006-6226-1
http://www.jstor.org/stable/2683704
https://ieeexplore.ieee.org/document/9018172
https://cseweb.ucsd.edu//~lcayton/resexam.pdf
https://arxiv.org/abs/1310.0425
https://arxiv.org/abs/1310.0425
https://wellcomeopenresearch.org/articles/4-63
https://wellcomeopenresearch.org/articles/4-63
https://github.com/pog87/PtitPrince/blob/master/RainCloud_Plot.ipynb
https://www.sciencedirect.com/science/article/pii/S0378779620304752
https://www.sciencedirect.com/science/article/pii/S0378779620304752
https://ieeexplore.ieee.org/abstract/document/8851855
https://ieeexplore.ieee.org/abstract/document/8851855
https://tel.archives-ouvertes.fr/tel-03624628/document
https://www.diva-portal.org/smash/get/diva2:1395253/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1395253/FULLTEXT01.pdf

	Introduction
	Preventive AC-SCOPF formulation 
	Machine learning methods 
	ML Algorithms
	Deep neural networks glouppe2022,GoodBengCour16
	Random forests

	Definitions

	Test problem Setup
	Robustness study
	Variability and uncertainty of net demand
	Assumptions about the load distribution
	Assumptions about power factors

	Exogenous market disturbances
	Variable system topology
	Grid-based topology variations
	Generation-based topology variations


	Recommendations and Research Directions
	References

