Absorption; Food additive; Intestine; Microbiota; Nutrition; Phospholipid; Medicine (miscellaneous); Food Science; Nutrition and Dietetics
Abstract :
[en] Synthetic emulsifiers promote metabolic syndrome and considerably alter gut microbiota. Data is lacking regarding natural emulsifiers like plant lecithins, a polar lipid-rich source of 18:3n-3 PUFA (ALA). For 13 weeks, male Swiss mice were fed ALA-replete semi-synthetic high-fat diet (HFD) including lecithin from rapeseed (RL) or soy, vs 2 HFD-controls devoid of lecithin (ALA-replete; low-ALA), vs Chow. Lecithins did not enhance HFD-induced adiposity nor increased inflammation, did not alter gut barrier markers and caecal bile acids, and contributed to n-3 PUFA status. Lecithins improved gut microbiota diversity. RL (10% in fat) even restored α-diversity similar to Chow, increased Lachnospiraceae NK4A136, Lactobacillus and Ruminococcaceae UCG-014 groups, and decreased Blautia genus bacteria. The abundance of most beneficial lecithin-enhanced bacteria was positively correlated to the amount of faecal polar lipid-bound ALA. These findings show that lecithins can beneficially affect the gut microbiota in association with changes in lipid residues in the distal gut.
Disciplines :
Food science
Author, co-author :
Robert, Chloé; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France ; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
Penhoat, Armelle; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Couëdelo, Leslie; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
Monnoye, Magali; Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
Rainteau, Dominique; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Clinical Metabolomics Department, France
Meugnier, Emmanuelle; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Bary, Sofia; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
Abrous, Hélène; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
Loizon, Emmanuelle; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Krasniqi, Pranvera; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Clinical Metabolomics Department, France
Chanon, Stéphanie; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Vieille-Marchiset, Aurélie; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Caillet, François; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Danthine, Sabine ; Université de Liège - ULiège > TERRA Research Centre > Technologie Alimentaire (TA)
Vidal, Hubert; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
Guillot, Nicolas; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France ; LIBM, INSA-Lyon, France
Gérard, Philippe; Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
Vaysse, Carole; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
Michalski, Marie-Caroline; Univ-Lyon, CarMeN laboratory, INSERM, INRAE, Pierre Bénite, France
The authors would like to thank Béatrice Morio, Frédéric Capel and Mélanie Le Barz for helpful advice on experimental procedures and useful discussion of the results. The authors thank Alexandre Debain for this help during the animal study. We also thank Didier Majou (ACTIA) for useful discussion. CR thanks ANRT (Association Nationale de la Recherche et de la Technologie) for PhD funding (CIFRE 2017/12/2). CarMeN and ITERG are members of UMT ACTIA BALI. CR is grateful to GERLI and Société Francophone de Nutrition for the GERLI-SFN Thesis Prize 2022. We are grateful to the @BRIDGe sequencing facility (GABI, INRAE, AgroParisTech, Paris-Saclay University) and to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing help and storage resources. SD acknowledges the support of Wallonie-Bruxelles International and Fonds de la Recherche scientifique (FNRS). MCM acknowledges Partenariat Hubert Curien PHC TOURNESOL project N°46226VD for funding. Part of the artwork is derived from Freepik, Pixabay and Servier Medical Art.The authors would like to thank Béatrice Morio, Frédéric Capel and Mélanie Le Barz for helpful advice on experimental procedures and useful discussion of the results. The authors thank Alexandre Debain for this help during the animal study. We also thank Didier Majou (ACTIA) for useful discussion. CR thanks ANRT (Association Nationale de la Recherche et de la Technologie) for PhD funding (CIFRE 2017/12/2). CarMeN and ITERG are members of UMT ACTIA BALI. CR is grateful to GERLI and Société Francophone de Nutrition for the GERLI-SFN Thesis Prize 2022. We are grateful to the @BRIDGe sequencing facility (GABI, INRAE, AgroParisTech, Paris-Saclay University) and to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing help and storage resources. SD acknowledges the support of Wallonie-Bruxelles International and Fonds de la Recherche scientifique (FNRS). MCM acknowledges Partenariat Hubert Curien PHC TOURNESOL project N°46226VD for funding. Part of the artwork is derived from Freepik, Pixabay and Servier Medical Art.
Agellon, L.B., Walkey, C.J., Vance, D.E., Kuipers, F., Verkade, H.J., The unique acyl chain specificity of biliary phosphatidylcholines in mice is independent of their biosynthetic origin in the liver. Hepatology 30 (1999), 725–729, 10.1002/hep.510300305.
ANSES. Rapport d'expertise collective. Étude individuelle nationale des consommations alimentaires 3 (INCA 3). Juin 2017. Edition Scientifique. 2017.
ANSES. Évolution de l'utilisation des additifs alimentaires dans les produits transformés. Anses - Agence Natl Sécurité Sanit L'alimentation L'environnement Trav 2019. https://www.anses.fr/fr/content/%C3%A9volution-de-l%E2%80%99utilisation-des-additifs-alimentaires-dans-les-produits-transform%C3%A9s (accessed August 12, 2022).
AOCS. Official Methods and Recommended Practices of the AOCS, 7th Edition 2nd Printing. 2017.
Araújo, J.R., Tomas, J., Brenner, C., Sansonetti, P.J., Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 141 (2017), 97–106, 10.1016/j.biochi.2017.05.019.
Basic, M., Dardevet, D., Abuja, M., Bolsega, S., Bornes, S., Caesar, R., et al. From association to causative studies on impact of gut microbiota on metabolism and immunity. Gut Microbes, 2022.
Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., Simone, C.D., Carbo, A., Shaykhutdinov, R., et al. Probiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis. PLoS One1, 7, 2012, e31238.
Becart, I., Chevalier, C., Biesse, J.P., Quantitative analysis of phospholipids by HPLC with a light scattering evaporating detector – application to raw materials for cosmetic use. Journal of High Resolution Chromatography 13 (1990), 126–129, 10.1002/jhrc.1240130210.
Busnelli, M., Manzini, S., Jablaoui, A., Bruneau, A., Kriaa, A., Philippe, C., et al. Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. Molecular Nutrition & Food Research, 64, 2020, e1900835.
Castro-Gómez, P., Fontecha, J., Rodríguez-Alcalá, L.M., A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 128 (2014), 518–523, 10.1016/j.talanta.2014.05.051.
Chassaing, B., Compher, C., Bonhomme, B., Liu, Q., Tian, Y., Walters, W., et al. Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome. Gastroenterology 162 (2022), 743–756, 10.1053/j.gastro.2021.11.006.
Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519 (2015), 92–96, 10.1038/nature14232.
Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., Gewirtz, A.T., Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66 (2017), 1414–1427, 10.1136/gutjnl-2016-313099.
Chazelas, E., Druesne-Pecollo, N., Esseddik, Y., de Edelenyi, F.S., Agaesse, C., De Sa, A., et al. Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Santé cohort. Scientific Reports, 11, 2021, 19680, 10.1038/s41598-021-98496-6.
Chen, Y., Yang, B., Ross, R.P., Jin, Y., Stanton, C., Zhao, J., et al. Orally Administered CLA Ameliorates DSS-Induced Colitis in Mice via Intestinal Barrier Improvement, Oxidative Stress Reduction, and Inflammatory Cytokine and Gut Microbiota Modulation. Journal of Agricultural and Food Chemistry 67 (2019), 13282–13298, 10.1021/acs.jafc.9b05744.
Couëdelo, L., Buaud, B., Abrous, H., Chamekh-Coelho, I., Majou, D., Boué-Vaysse, C., Effect of increased levels of dietary α-linolenic acid on the n-3 PUFA bioavailability and oxidative stress in rat. The British Journal of Nutrition, 2021, 1–14, 10.1017/S0007114521002294.
Danthine, S., Vors, C., Agopian, D., Durand, A., Guyon, R., Carriere, F., et al. Homogeneous triacylglycerol tracers have an impact on the thermal and structural properties of dietary fat and its lipolysis rate under simulated physiological conditions. Chemistry and Physics of Lipids, 225, 2019, 104815, 10.1016/j.chemphyslip.2019.104815.
Davies, J.M., Hua, H.-U., Dheer, R., Martinez, M., Bhattacharya, S.K., Abreu, M.T., Stool Phospholipid Signature is Altered by Diet and Tumors. PLoS One1, 2014, 9, 10.1371/journal.pone.0114352.
de Aguiar Vallim, T.Q., Tarling, E.J., Edwards, P.A., Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism 17 (2013), 657–669, 10.1016/j.cmet.2013.03.013.
Druart, C., Neyrinck, A.M., Vlaeminck, B., Fievez, V., Cani, P.D., Delzenne, N.M., Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One1, 9, 2014, e87560.
Duan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., Zheng, H., Characteristics of gut microbiota in people with obesity. PLoS One1, 16, 2021, e0255446.
Escudié, F., Auer, L., Bernard, M., Mariadassou, M., Cauquil, L., Vidal, K., et al. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 34 (2018), 1287–1294, 10.1093/bioinformatics/btx791.
Folch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry 226 (1957), 497–509.
Food and Drug Administration. Guidance for Industry - Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers 2005.
Gabert, L., Vors, C., Louche-Pélissier, C., Sauvinet, V., Lambert-Porcheron, S., Drai, J., et al. 13C tracer recovery in human stools after digestion of a fat-rich meal labelled with [1,1,1–13C3]tripalmitin and [1,1,1–13C3]triolein. Rapid Communications in Mass Spectrometry RCM 25 (2011), 2697–2703, 10.1002/rcm.5067.
Galié, S., García-Gavilán, J., Camacho-Barcía, L., Atzeni, A., Muralidharan, J., Papandreou, C., et al. Effects of the Mediterranean Diet or Nut Consumption on Gut Microbiota Composition and Fecal Metabolites and their Relationship with Cardiometabolic Risk Factors. Molecular Nutrition & Food Research, 65, 2021, e2000982.
Gao S, He Y, Zhang L, Liu L, Qu C, Zheng Z, et al. Conjugated linoleic acid ameliorates hepatic steatosis by modulating intestinal permeability and gut microbiota in ob/ob mice. Food Nutr Res 2022;66:10.29219/fnr.v66.8226. 10.29219/fnr.v66.8226.
Gérard, P., The crosstalk between the gut microbiota and lipids. OCL, 27, 2020, 70, 10.1051/ocl/2020070.
Guillocheau, E., Legrand, P., Rioux, V., Benefits of natural dietary trans fatty acids towards inflammation, obesity and type 2 diabetes: Defining the n-7 trans fatty acid family. OCL, 26, 2019, 46, 10.1051/ocl/2019047.
Guillocheau, E., Penhoat, C., Drouin, G., Godet, A., Catheline, D., Legrand, P., et al. Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: A market basket investigation. Food Chem X, 5, 2020, 100081, 10.1016/j.fochx.2020.100081.
Humbert, L., Maubert, M.A., Wolf, C., Duboc, H., Mahé, M., Farabos, D., et al. Bile acid profiling in human biological samples: Comparison of extraction procedures and application to normal and cholestatic patients. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 899 (2012), 135–145, 10.1016/j.jchromb.2012.05.015.
Kim, Y., Son, D., Kim, B.K., Kim, K.H., Seo, K.W., Jung, K., et al. Association between the Blautia/Bacteroides Ratio and Altered Body Mass Index after Bariatric Surgery. Endocrinol Metab Seoul Korea 37 (2022), 475–486, 10.3803/EnM.2022.1481.
Lecomte, M., Couëdelo, L., Meugnier, E., Loizon, E., Plaisancié, P., Durand, A., et al. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets. The Journal of Nutritional Biochemistry 43 (2017), 116–124, 10.1016/j.jnutbio.2017.02.004.
Lecomte, M., Couëdelo, L., Meugnier, E., Plaisancié, P., Létisse, M., Ben, B., et al. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Molecular Nutrition & Food Research 60 (2016), 609–620, 10.1002/mnfr.201500703.
Lemaire, M., Dou, S., Cahu, A., Formal, M., Le Normand, L., Romé, V., et al. Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 8, 2018, 11656, 10.1038/s41598-018-29971-w.
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 12, 2020, E1474, 10.3390/nu12051474.
Milard, M., Laugerette, F., Durand, A., Buisson, C., Meugnier, E., Loizon, E., et al. Milk Polar Lipids in a High-Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition & Food Research, 63, 2019, 1801078, 10.1002/mnfr.201801078.
Mortensen, A., Aguilar, F., Crebelli, R., Domenico, A.D., Frutos, M.J., Galtier, P., et al. Re-evaluation of lecithins (E 322) as a food additive. EFSA Journal, 15, 2017, e04742.
Muralidharan, J., Moreno-Indias, I., Bulló, M., Lopez, J.V., Corella, D., Castañer, O., et al. Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-Plus Study. The American Journal of Clinical Nutrition 114 (2021), 1148–1158, 10.1093/ajcn/nqab150.
Naimi, S., Viennois, E., Gewirtz, A.T., Chassaing, B., Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome, 9, 2021, 66, 10.1186/s40168-020-00996-6.
Ozato, N., Yamaguchi, T., Mori, K., Katashima, M., Kumagai, M., Murashita, K., et al. Two Blautia Species Associated with Visceral Fat Accumulation: A One-Year Longitudinal Study. Biology, 11, 2022, 318, 10.3390/biology11020318.
Paone, P., Cani, P.D., Mucus barrier, mucins and gut microbiota: The expected slimy partners?. Gut 69 (2020), 2232–2243, 10.1136/gutjnl-2020-322260.
Pelaseyed, T., Bergström, J.H., Gustafsson, J.K., Ermund, A., Birchenough, G.M.H., Schütte, A., et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews 260 (2014), 8–20, 10.1111/imr.12182.
Reddy, S.T., Winstead, M.V., Tischfield, J.A., Herschman, H.R., Analysis of the secretory phospholipase A2 that mediates prostaglandin production in mast cells. The Journal of Biological Chemistry 272 (1997), 13591–13596, 10.1074/jbc.272.21.13591.
Reshetnyak, V.I., Physiological and molecular biochemical mechanisms of bile formation. World journal of gastroenterology: WJG 19 (2013), 7341–7360, 10.3748/wjg.v19.i42.7341.
Richey Levine, A., Picoraro, J.A., Dorfzaun, S., LeLeiko, N.S., Emulsifiers and Intestinal Health: An Introduction. Journal of Pediatric Gastroenterology and Nutrition 74 (2022), 314–319, 10.1097/MPG.0000000000003361.
Robert, C., Buisson, C., Laugerette, F., Abrous, H., Rainteau, D., Humbert, L., et al. Impact of Rapeseed and Soy Lecithin on Postprandial Lipid Metabolism, Bile Acid Profile, and Gut Bacteria in Mice. Molecular Nutrition & Food Research, 65, 2021, e2001068.
Robert, C., Couëdelo, L., Knibbe, C., Fonseca, L., Buisson, C., Errazuriz-Cerda, E., et al. Rapeseed Lecithin Increases Lymphatic Lipid Output and α-Linolenic Acid Bioavailability in Rats. The Journal of Nutrition 150 (2020), 2900–2911, 10.1093/jn/nxaa244.
Robert, C., Couëdelo, L., Vaysse, C., Michalski, M.-C., Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 169 (2020), 121–132, 10.1016/j.biochi.2019.11.017.
Rohr, M.W., Narasimhulu, C.A., Rudeski-Rohr, T.A., Parthasarathy, S., Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition (Bethesda, Md.) 11 (2020), 77–91, 10.1093/advances/nmz061.
Rombaut, R., Camp, J.V., Dewettinck, K., Analysis of Phospho- and Sphingolipids in Dairy Products by a New HPLC Method. Journal of Dairy Science 88 (2005), 482–488, 10.3168/jds.S0022-0302(05)72710-7.
Safari, Z., Bruneau, A., Monnoye, M., Mariadassou, M., Philippe, C., Zatloukal, K., et al. Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients, 12, 2020, E287, 10.3390/nu12020287.
Sehl, A., Couëdelo, L., Chamekh-Coelho, I., Vaysse, C., Cansell, M., In vitro lipolysis and lymphatic absorption of n-3 long-chain polyunsaturated fatty acids in the rat: Influence of the molecular lipid species as carrier. The British Journal of Nutrition, 2019, 1–21, 10.1017/S0007114519001491.
Sehl, A., Couëdelo, L., Fonseca, L., Vaysse, C., Cansell, M., A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes. Food Chemistry 251 (2018), 1–8, 10.1016/j.foodchem.2018.01.060.
Shah, R., Kolanos, R., DiNovi, M.J., Mattia, A., Kaneko, K.J., Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 34 (2017), 905–917, 10.1080/19440049.2017.1311420.
Simopoulos, A.P., An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8, 2016, 128, 10.3390/nu8030128.
Srour, B., Kordahi, M.C., Bonazzi, E., Deschasaux-Tanguy, M., Touvier, M., Chassaing, B. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol Hepatol 2022:S2468-1253(22)00169-8. 10.1016/S2468-1253(22)00169-8.
Stremmel, W., Vural, H., Evliyaoglu, O., Weiskirchen, R., Delayed-Release Phosphatidylcholine Is Effective for Treatment of Ulcerative Colitis: A Meta-Analysis. Digestive diseases (Basel, Switzerland) 39 (2021), 508–515, 10.1159/000514355.
Su, Q., Liu, Q., Factors Affecting Gut Microbiome in Daily Diet. Frontiers in Nutrition, 8, 2021, 644138, 10.3389/fnut.2021.644138.
Thilakarathna, S.H., Hamad, S., Cuncins, A., Brown, M., Wright, A.J., Emulsion Droplet Crystallinity Attenuates Postprandial Plasma Triacylglycerol Responses in Healthy Men: A Randomized Double-Blind Crossover Acute Meal Study. The Journal of Nutrition 150 (2020), 64–72, 10.1093/jn/nxz207.
Tian, B., Zhao, J., Zhang, M., Chen, Z., Ma, Q., Liu, H., et al. Lycium ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Molecular Nutrition & Food Research, 65, 2021, e2000745.
van Trijp, M.P.H., Schutte, S., Esser, D., Wopereis, S., Hoevenaars, F.P.M., Hooiveld, G.J.E.J., et al. Minor Changes in the Composition and Function of the Gut Microbiota During a 12-Week Whole Grain Wheat or Refined Wheat Intervention Correlate with Liver Fat in Overweight and Obese Adults. The Journal of Nutrition 151 (2021), 491–502, 10.1093/jn/nxaa312.
Viennois, E., Chassaing, B., Consumption of Select Dietary Emulsifiers Exacerbates the Development of Spontaneous Intestinal Adenoma. International Journal of Molecular Sciences, 22, 2021, 2602, 10.3390/ijms22052602.
Wahlström, A., Sayin, S.I., Marschall, H.-U., Bäckhed, F., Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism 24 (2016), 41–50, 10.1016/j.cmet.2016.05.005.
Zheng, X., Huang, F., Zhao, A., Lei, S., Zhang, Y., Xie, G., et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biology, 15, 2017, 120, 10.1186/s12915-017-0462-7.