[en] In this work, we generalize the problem of learning through interaction in a POMDP by accounting for eventual additional information available at training time. First, we introduce the informed POMDP, a new learning paradigm offering a clear distinction between the information at training and the observation at execution. Next, we propose an objective that leverages this information for learning a sufficient statistic of the history for the optimal control. We then adapt this informed objective to learn a world model able to sample latent trajectories. Finally, we empirically show a learning speed improvement in several environments using this informed world model in the Dreamer algorithm. These results and the simplicity of the proposed adaptation advocate for a systematic consideration of eventual additional information when learning in a POMDP using model-based RL.
Disciplines :
Computer science
Author, co-author :
Lambrechts, Gaspard ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Bolland, Adrien ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Ernst, Damien ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Language :
English
Title :
Informed POMDP: Leveraging Additional Information in Model-Based RL