

Informed POMDP: Leveraging Additional Information in Model-Based RL Gaspard Lambrechts, Adrien Bolland and Damien Ernst

1. Informed POMDP

3. Informed Dreamer

While partial observability at execution time is a realistic assumption, assuming the same partial observability at training time is too pessimistic.

Informed POMDP

Formally, an informed POMDP \widetilde{P} is defined as $\widetilde{\mathcal{P}} = (\mathcal{S}, \mathcal{A}, \mathcal{I}, \mathcal{O}, T, R, \widetilde{I}, \widetilde{O}, P, \gamma),$

- ▶ State $s \in \mathcal{S}$,
- ► Action $a \in \mathcal{A}$,
- ▶ Information $i \in \mathcal{I}$,
- ▶ Observation $o \in \mathcal{O}$,
- ► Transition distribution $T(s' \mid s, a)$, ► Discount factor $\gamma \in [0, 1[$.

NB: o is conditionally independent of s given i.

Learning a sufficient statistic using the reward and information still provides a world model from which latent trajectories can be sampled.

Informed World Model

The **informed world model** writes,

$$\hat{e} \sim q_{\theta}^{p}(\cdot|z,a),$$

$$\hat{r} \sim q_{\theta}^{r}(\cdot|z,\hat{e}),$$

$$\hat{i'} \sim q_{\theta}^{i}(\cdot|z,\hat{e}),$$

$$e \sim q_{\theta}^{e}(\cdot|z,a,o'),$$

$$z' = u_{\theta}(z,a,e).$$

(prior, 4) (reward decoder, 5) (information decoder, 6) (encoder, 7) (recurrence, 8)

where \hat{e} is the latent variable. The prior q_{θ}^{p} and the decoders q_{θ}^{i} and q_{θ}^{r} are jointly trained with the encoder to **maximize the likelihood** (2) using the ELBO.

Execution POMDP

The underlying **execution POMDP** \mathcal{P} of the informed POMDP $\widetilde{\mathcal{P}}$ is defined as $\mathcal{P} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, T, R, O, P, \gamma)$, where $O(o|s) = \int_{I} \widetilde{O}(o|i)\widetilde{I}(i|s) \, \mathrm{d}i$.

The **history** at time t is defined as $h_t = (o_0, a_0, \ldots, o_t) \in \mathcal{H}$, where \mathcal{H} is the set of histories of arbitrary length.

A history-dependent policy $\eta: \mathcal{H} \to \Delta(\mathcal{A})$ is a mapping from histories to probability measures over the action space, and is optimal when it maximizes the return,

$$J(\eta) = \mathbb{E}_{\mathcal{P},\eta} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right].$$
(1)

 $\blacktriangleright \text{ Reward function } r = R(s, a),$

 \blacktriangleright Initialization distribution $P(s_0)$,

▶ Information distribution I(i | s),

▶ Observation distribution $O(o \mid i)$,

The **RL objective** is to find an optimal policy for the **execution POMDP** using interaction samples $(i_0, o_0, a_0, r_0, \dots, i_t, o_t)$ from the **informed POMDP**.

Note that the statistic z is no longer deterministically updated to z' given a and o', instead we have $z \sim f_{\theta}(\cdot|h)$, which is induced by u_{θ} and q_{θ}^{e} .

The latent representation \hat{e} , trained to minimize KL divergence in to e in expectation, encodes the whole dependence of r, i' (and thus o') on the history.

 \Rightarrow It allows sampling latent trajectoires without needing an observation decoder, but using its latent representation $\hat{e} \sim q_{\theta}^{p}(\cdot|z,a)$ in update (8).

2. Learning Sufficient Statistics

If a statistic from the history is recurrent and predictive of the reward and information given the action, it is sufficient for the optimal control.

We consider policies that compute a **statistic from the history** z = f(h), before outputting the action distribution $\eta(a|h) = g(a|f(h))$, denoted $\eta = g \circ f$.

This statistic needs to contain all relevant information from the history to act optimally.

Theorem (Sufficiency of Recurrent Predictive Sufficient Statistics) In an informed POMDP $\widetilde{\mathcal{P}}$, a statistic $f: \mathcal{H} \to \mathcal{Z}$ is sufficient for the optimal control, i.e., $\max_g J(g \circ f) = \max_\eta J(\eta)$, if it is,

(i) **recurrent** $f(h') = u(f(h), a, o'), \forall h' = (h, a, o'),$

(ii) **predictive sufficient** $p(r, i'|h, a) = p(r, i'|f(h), a), \forall (h, a, r, i').$

The learning curves of the **Uninformed Dreamer** and the **Informed Dreamer** are given below for some illustrative (cherry-picked) environments.

Under mild assumptions, those sufficiency conditions can be satisfied (i) by design (e.g., using an RNN f_{θ}) and (ii) by maximising the following variational objective,

In practice, we **jointly maximize** the sufficiency objective and the RL objective, using a parametrized history-dependent policy $\eta_{\theta,\phi} = g_{\phi} \circ f_{\theta}$,

Conclusion

(2)

Take-Home Message

It is easy and useful to exploit additional information when available at training.
If i is designed carefully, recurrently learning p(r, i'|h, a) provides a sufficient statistic.
It also provides an informed world model.

Future Works

- Generalize theorem to stochastic $z \sim f_{\theta}(\cdot|h)$ to better support the world model.
- \blacktriangleright Study conditions on the information i for the convergence speed to improve.
- ▶ Study robustness and generalization of the informed world model.