Affected area; Bi-layer; Electropulsing; Kelvin probe force microscopy; Localised; Materials modification; Micro-bridge; Multi terminals; Scanning electrons; Secondary electron detectors; Physics and Astronomy (all); General Physics and Astronomy
Abstract :
[en] We investigate targeted and localized material modifications produced by electropulsing of Al-capped Nb microbridges with a multiterminal configuration. The affected regions of the Nb/Al bilayer terminals are revealed by an in-lens secondary-electron detector in a scanning electron microscope and by Kelvin-probe force microscopy, both suggesting a decrease in the work function in the modified areas. In contrast, the affected areas are neither apparent through an Everhart-Thornley secondary-electron detector nor through atomic force microscopy, which indicates little morphological change in the microstructure. In addition, we demonstrate that the extent of the electroannealed regions is strongly influenced by the terminal geometry. These results are captured by complementary finite-element modeling, which permits us to estimate that a threshold temperature of 435±35 K is needed to induce material modifications. These findings provide further insights into the subtle modifications produced by gentle electroannealing of Nb/Al microstructures and represent a step forward towards mastering this emerging nanofabrication technique.
Disciplines :
Physics
Author, co-author :
Marinkovic, Stefan ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Abbey, E.A. ; Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de Liège, Belgium ; Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
Chaves, D.A.D. ; Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil ; Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Collienne, Simon ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Fourneau, Emile ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Jiang, L. ; Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de Liège, Belgium ; School of Aeronautics, Northwestern Polytechnical University, Xi'an, China
Xue, C. ; School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
Zhou, Y.H.; School of Aeronautics, Northwestern Polytechnical University, Xi'an, China ; Key Lab. of Mechanics on Disaster and Environment in Western China, Ministry of Education of China, Department of Mechanics and Engineering Sciences, Lanzhou University, Lanzhou, China
Ortiz, W.A. ; Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
Motta, M. ; Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Volodin, A. ; Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Van De Vondel, J. ; Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen FAPESP - São Paulo Research Foundation CNPq - National Council for Scientific and Technological Development CAPES - Coordination of Higher Education Personnel Improvement
Funding text :
The authors acknowledge support from the EU COST action SUPERQUMAP CA21144, the Fonds de la Recherche Scientifique—FNRS under Grants No. PDR T.0204.21 and No. CDR J.0176.22, and the Research Foundation Flanders (FWO, Belgium), Grant No. G0A0619N. This work was partially supported by the São Paulo Research Foundation (FAPESP, Grant No. 2021/08781-8 and 2022/03124-1), the National Council for Scientific and Technological Development (CNPq, Grants No. 316602/2021-3 and No. 309928/2018-4), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001. E.A.A. and D.A.D.C. acknowledge Capes-PDSE Grants No. 88881.624496/2021-01 and No. 88881.624531/2021-01, respectively. S.M. acknowledges support from FRS-FNRS (ASP Research Fellowship). The work of L.J. was supported by the China Scholarship Council.
H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators (Wiley-VCH, New York, 2008), Vol. 2.
P. Bernard, D. Bloess, W. Hartung, C. Hauviller, W. Weingarten, P. Bosland, and J. Martignac, Superconducting niobium sputter-coated copper cavities at 1500 MHz, Part. Accel. 40, 487 (1992).
D. Proch, Superconducting cavities for accelerators, Rep. Prog. Phys. 61, 431 (1998). 0034-4885 10.1088/0034-4885/61/5/001
S. K. Lam and D. L. Tilbrook, Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations, Appl. Phys. Lett. 82, 1078 (2003). 0003-6951 10.1063/1.1554770
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, Superconducting quantum interference devices: State of the art and applications, Proc. IEEE 92, 1534 (2004). 0018-9219 10.1109/JPROC.2004.833655
M. Mück, M. O. André, J. Clarke, J. Gail, and C. Heiden, Radio-frequency amplifier based on a niobium dc superconducting quantum interference device with microstrip input coupling, Appl. Phys. Lett. 72, 2885 (1998). 0003-6951 10.1063/1.121490
V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, and B. Pannetier, Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films, Appl. Phys. Lett. 79, 123 (2001). 0003-6951 10.1063/1.1382626
C. J. Muller, J. M. V. Ruitenbeek, and L. J. D. Jongh, Experimental observation of the transition from weak link to tunnel junction, Physica C 191, 485 (1992). 0921-4534 10.1016/0921-4534(92)90947-B
D. E. Oates and G. F. Dionne, Magnetically tunable superconducting resonators and filters, IEEE Trans. Appl. Supercond. 9, 4170 (1999). 1051-8223 10.1109/77.783944
S. S. Attar, S. Setoodeh, P. D. Laforge, M. Bakri-Kassem, and R. R. Mansour, Low temperature superconducting tunable bandstop resonator and filter using superconducting RF MEMS varactors, IEEE Trans. Appl. Supercond. 24, 150709 (2014). 1051-8223 10.1109/TASC.2014.2318315
S. H. Talisa, M. A. Janocko, C. Moskowitz, J. Talvacchio, J. F. Billing, R. Brown, D. C. Buck, K. Jones, B. R. McAvoy, G. R. Wagner, and D. H. Watt, Low-and high-temperature superconducting microwave filters, IEEE Trans. Microw. Theory Tech. 39, 1448 (1991). 0018-9480 10.1109/22.83816
M. Tanaka, H. Akaike, A. Fujimaki, Y. Yamanashi, N. Yoshikawa, S. Nagasawa, K. Takagi, and N. Takagi, 100-GHz single-flux-quantum bit-serial adder based on 10-(Equation presented) niobium process, IEEE Trans. Appl. Supercond. 21, 792 (2011). 1051-8223 10.1109/TASC.2010.2101034
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Quantum memory with millisecond coherence in circuit QED, Phys. Rev. B 94, 014506 (2016). 2469-9950 10.1103/PhysRevB.94.014506
A. A. Murthy, P. M. Das, S. M. Ribet, C. Kopas, J. Lee, M. J. Reagor, L. Zhou, M. J. Kramer, M. C. Hersam, M. Checchin, A. Grassellino, R. dos Reis, V. P. Dravid, and A. Romanenko, Developing a chemical and structural understanding of the surface oxide in a niobium superconducting qubit, ACS Nano 16, 17257 (2022). 1936-0851 10.1021/acsnano.2c07913
G. A. Hernandez, R. Bai, Y. Cao, J. A. Sellers, C. D. Ellis, D. B. Tuckerman, and M. C. Hamilton, Microwave performance of niobium/kapton superconducting flexible cables, IEEE Trans. Appl. Supercond. 27, 1200104 (2017). 1051-8223 10.1109/TASC.2016.2645683
V. Gupta, B. Yelamanchili, S. Zou, T. Isaacs-Smith, J. A. Sellers, D. B. Tuckerman, and M. C. Hamilton, Thin-film Nb/polyimide superconducting stripline flexible cables, IEEE Trans Appl. Supercond. 29, 1501605 (2019). 1051-8223 10.1109/TASC.2019.2904203
P. V. Tyagi, M. Doleans, B. Hannah, R. Afanador, C. McMahan, S. Stewart, J. Mammosser, M. Howell, J. Saunders, B. Degraff, and S. H. Kim, Improving the work function of the niobium surface of SRF cavities by plasma processing, Appl. Surf. Sci. 369, 29 (2016). 0169-4332 10.1016/j.apsusc.2016.02.030
W. Keijers, X. D. Baumans, R. Panghotra, J. Lombardo, V. S. Zharinov, R. B. Kramer, A. V. Silhanek, and J. Van de Vondel, Nano-SQUIDs with controllable weak links created: Via current-induced atom migration, Nanoscale 10, 21475 (2018). 2040-3364 10.1039/c8nr06433d
J. Lombardo, Željko L. Jelić, X. D. Baumans, J. E. Scheerder, J. P. Nacenta, V. V. Moshchalkov, J. Van de Vondel, R. B. Kramer, M. V. Milošević, and A. V. Silhanek, In situ tailoring of superconducting junctions via electro-annealing, Nanoscale 10, 1987 (2018). 2040-3364 10.1039/c7nr08571k
S. Collienne, B. Raes, W. Keijers, J. Linek, D. Koelle, R. Kleiner, R. B. Kramer, J. Van de Vondel, and A. V. Silhanek, Nb-Based Nanoscale Superconducting Quantum Interference Devices Tuned by Electroannealing, Phys. Rev. Appl. 15, 034016 (2021). 2331-7019 10.1103/PhysRevApplied.15.034016
S. Collienne, D. Majidi, J. Van de Vondel, C. B. Winkelmann, and A. V. Silhanek, Targeted modifications of monolithic multiterminal superconducting weak-links, Nanoscale 14, 5425 (2022). 2040-3364 10.1039/D2NR00026A
S. B. Alvarez, J. Brisbois, S. Melinte, R. B. Kramer, and A. V. Silhanek, Statistics of thermomagnetic breakdown in Nb superconducting films, Sci. Rep. 9, 3659 (2019). 2045-2322 10.1038/s41598-019-39337-5
J. Evertsson, F. Bertram, F. Zhang, L. Rullik, L. R. Merte, M. Shipilin, M. Soldemo, S. Ahmadi, N. Vinogradov, F. Carlà, J. Weissenrieder, M. Göthelid, J. Pan, A. Mikkelsen, J.-O. Nilsson, and E. Lundgren, The thickness of native oxides on aluminum alloys and single crystals, Appl. Surf. Sci. 349, 826 (2015). 0169-4332 10.1016/j.apsusc.2015.05.043
J. M. Rowell, M. Gurvitch, and J. Geerk, Modification of tunneling barriers on Nb by a few monolayers of Al, Phys. Rev. B 24, 2278 (1981). 0163-1829 10.1103/PhysRevB.24.2278
M. Nonnenmacher, M. P. O'Boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921 (1991). 0003-6951 10.1063/1.105227
W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66, 1 (2011). 0167-5729 10.1016/j.surfrep.2010.10.001
Z. M. Wu, M. Steinacher, R. Huber, M. Calame, S. J. V. D. Molen, and C. Schönenberger, Feedback controlled electromigration in four-terminal nanojunctions, Appl. Phys. Lett. 91, 053118 (2007). 0003-6951 10.1063/1.2760150
T. Aref and A. Bezryadin, Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses, Nanotechnology 22, 395302 (2011). 0957-4484 10.1088/0957-4484/22/39/395302
X. D. A. Baumans, A. Fernandez-Rodriguez, N. Mestres, S. Collienne, J. V. de Vondel, A. Palau, and A. V. Silhanek, Electromigration in the dissipative state of high-temperature superconducting bridges, Appl. Phys. Lett. 114, 012601 (2019). 0003-6951 10.1063/1.5063797
J. Lombardo, S. Collienne, A. Petrillo, E. Fourneau, N. D. Nguyen, and A. V. Silhanek, Electromigration-induced resistance switching in indented Al microstrips, New J. Phys. 21, 113015 (2019). 1367-2630 10.1088/1367-2630/ab5025
F. B. Hagedorn and P. M. Hall, Right-angle bends in thin strip conductors, J. Appl. Phys. 34, 128 (1963). 0021-8979 10.1063/1.1729052
K. Kanaya and S. Okayama, Penetration and energy-loss theory of electrons in solid targets, J. Phys. D: Appl. Phys 5, 43 (1972). 0022-3727 10.1088/0022-3727/5/1/308
J. Li, B. Hoekstra, Z.-B. Wang, J. Qiu, and Y.-K. Pu, Secondary electron emission influenced by oxidation on the aluminum surface: The roles of the chemisorbed oxygen and the oxide layer, Plasma Sources Sci. Technol. 27, 044002 (2018). 1361-6595 10.1088/1361-6595/aab74b
T. T. Magkoev and G. G. Vladimirov, Aluminium oxide ultrathin-film growth on the Mo(110) surface: A work-function study, J. Phys.: Condens. Matter 13, L655 (2001). 0953-8984 10.1088/0953-8984/13/28/101
M. Grundner and J. Halbritter, XPS and AES studies on oxide growth and oxide coatings on niobium, J. Appl. Phys. 51, 397 (1980). 0021-8979 10.1063/1.327386
S. Halas and T. Durakiewicz, Is work function a surface or a bulk property, Vacuum 85, 486 (2010). 0042-207X 10.1016/j.vacuum.2010.01.017
Q. G. Wang and J. X. Shang, First-principles study on the incipient oxidization of Nb(110), J. Phys.: Condens. Matter 24, 225005 (2012). 0953-8984 10.1088/0953-8984/24/22/225005
F. Lacy, Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors, Nanoscale Res. Lett. 6, 636 (2011). 1556-276X 10.1186/1556-276X-6-636
R. K. Williams, V. H. Butler, R. S. Graves, and J. P. Moore, Experimental and theoretical evaluation of the phonon thermal conductivity of niobium at intermediate temperatures, Phys. Rev. B 28, 6316 (1983). 0163-1829 10.1103/PhysRevB.28.6316
R. G. Morris and J. G. Hust, Thermal conductivity measurements of silicon from (Equation presented) to (Equation presented), Phys. Rev. 124, 1426 (1961). 0031-899X 10.1103/PhysRev.124.1426
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61, 605 (1989). 0034-6861 10.1103/RevModPhys.61.605
A. Giri and P. E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces, Adv. Funct. Mater. 30, 201903857 (2020). 1616-301X 10.1002/adfm.201903857
L. P. H. Jeuregns, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum, J. Appl. Phys. 92, 1649 (2002). 0021-8979 10.1063/1.1491591
J. Kwo, G. K. Wertheim, M. Gurvitch, and D. N. Buchanan, X-ray photoemission spectroscopy study of surface oxidation of Nb/Al overlayer structures, Appl. Phys. Lett. 40, 675 (1982). 0003-6951 10.1063/1.93224
J. Halbritter, On the oxidation and on the superconductivity of niobium, Appl. Phys. A 43, 1 (1987). 0721-7250 10.1007/BF00615201
E. Trabaldo, A. Kalaboukhov, R. Arpaia, E. Wahlberg, F. Lombardi, and T. Bauch, Mapping the Phase Diagram of a (Equation presented) Nanowire through Electromigration, Phys. Rev. Appl. 17, 024021 (2022). 2331-7019 10.1103/PhysRevApplied.17.024021
J. Canet-Ferrer, E. Coronado, A. Forment-Aliaga, and E. Pinilla-Cienfuegos, Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy, Nanotechnology 25, 395703 (2014). 0957-4484 10.1088/0957-4484/25/39/395703
K. Ohnishi, T. Kimura, and Y. Otani, Improvement of superconductive properties of mesoscopic Nb wires by Ti passivation layers, Appl. Phys. Express 1, 021701 (2008). 1882-0778 10.1143/APEX.1.021701